. 24/7 Space News .

A lightweight sail (center) that could be used to propel a spacecraft for interstellar exploration is depicted in this frame from an animation. In this image, the sail receives beamed energy from a solar-powered satellite. The satellite converts its power to a microwave or laser beam to aim toward the sail. NASA scientists recently demonstrated both the microwave and laser beam concepts in successful laboratory experiments.

Future spacecraft that explore the depths of space will need to be very lightweight and be propelled by a reliable source of energy. Solar sails and microwave- and laser-beamed sails meet these reSailing Into A Future Of Space Explorationuirements, with minimal weight since in the first case the "engine" is the Sun, and in the latter two the engine is left at the point of origin. By use of a remote laser or microwave source from a satellite, beamed energy can be directed to the exploring spacecraft's sails. The result is the same as a sailboat receiving energy from the wind.

Sails for both the microwave and laser experiments were made of carbon-carbon microtruss fabric. This very light but stiff fabric can withstand high temperatures that are typical of flight-level power densities.

Sailing Into A Future Of Space Exploration
Pasadena - July 5, 2000 - In two breakthrough developments, NASA scientists have beamed microwaves and laser energy to "fill" lightweight sails in laboratory demonstrations of how these technologies might provide propulsion for interstellar exploration.

The sails used in the microwave experiment were actually driven to liftoff and flight, while the laser-driven sails achieved horizontal movement.

"These are really two giant steps forward," said Henry Harris, task manager for the microwave levitation and laser experiments at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "These results would not have been possible without newly developed ultralight, high-temperature sail materials and beamed- energy propulsion methods."

Future spacecraft that explore the depths of space will need to be very lightweight and be propelled by a reliable source of energy. Solar sails and microwave- and laser-beamed sails meet this requirement, with minimal weight since in the first case the "engine" is the Sun, while in the latter two the engine is left at the point of origin.

The sails are driven by photons, particles of energy in which sunlight and other forms of electromagnetic radiation are emitted. By use of a remote laser or microwave source, beamed energy can be directed toward a space sail. In space, the laser or microwave source may be provided by a satellite or other type of spacecraft.

The microwave-beamed sail experiment was conducted in a vacuum chamber at JPL, while the laser-driven experiment took place in another vacuum chamber at Wright-Patterson Air Force Base in Ohio. Both of these experiments appear to be firsts.

"Accelerations of several times the force of gravity were observed during the microwave tests," said Dr. James Benford, project director and president, Microwave Sciences, Inc., Lafayette, Calif. "In one case, the sail flew two feet in response to the high acceleration."

About 10 kilowatts of microwave power were beamed to the sails. Analysis of data is underway to isolate the photon pressure effect from other possible causes of sail movement.

In the other tests, laser powers from 7.9 to 13.9 kilowatts were directed to the sails. Photon thrust was calculated from movements of the sails, which were mounted on pendulums. Future research will fine-tune the scientific understanding of flight using photon pressure.

Sails for both experiments were made of carbon-carbon microtruss fabric and were provided by Dr. Timothy Knowles, Energy Science Laboratory, Inc., San Diego, Calif. This very light but stiff fabric can withstand high temperatures that are typical of flight-level power densities.

"These experiments are the first known measurements of laser photon thrust performance using lightweight sails that are candidates for spaceflight," said Dr. Leik Myrabo, associate professor at Rensselaer Polytechnic Institute, Troy, N.Y.

Both Benford and Myrabo are lead authors of papers describing the experiments. "Experimental Investigation of Laser- Pushed Light Sails in A Vacuum," by Myrabo, was presented June 2 during the Advanced Propulsion Conference at JPL. Benford's paper, "Microwave Beam-Driven Propulsion Experiments for High- Speed Space Exploration," was presented at EuroEM 2000, held in Edinburgh, Scotland, May 30-June 2 and also at the JPL conference. Knowles and Harris are among the co-authors on both papers. Harris is also co-investigator on the microwave experiment.

Energy Science Laboratories Inc. holds the patent on the sail materials used in these tests. JPL has overall responsibility for NASA's interstellar missions, while NASA's Marshall Space Flight Center, Huntsville, Ala., is responsible for developing transportation systems for the missions. The laser experiment was conducted in the Laser Hardened Materials Evaluation Laboratory II at Wright-Patterson Air Force Base.

SPACE-SHIP.COM
 Space Travel Teeters On Edge Of Revolution
by Francis Temman
Greenbelt (AFP) June 12, 2000 - On first glance, the idea of launching missions beyond our solar system seems straight out of a science fiction novel, but Robert Winglee thinks it's possible with his magnetic propulsion system.




Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.