. 24/7 Space News .
STELLAR CHEMISTRY
Young Star Caught in a Fit of Growth
by Staff Writers
Pasadena CA (SPX) Dec 19, 2018

An illustration of a young star undergoing an outburst, in which material from a surrounding disk has drained onto the star itself, bulking up its mass. Gas is seen flowing outward in green.

Researchers have discovered a young star in the midst of a rare growth spurt - a dramatic phase of stellar evolution when matter swirling around a star falls onto the star, bulking up its mass. The star belongs to a class of fitful stars known as FU Ori's, named after the original member of the group, FU Orionis (the capital letters represent a naming scheme for variable stars, and Orionis refers to its location in the Orion constellation).

Typically, these stars, which are less than a few million years old, are hidden behind thick clouds of dust and hard to observe. This new object is only the 25th member of this class found to date and one of only about a dozen caught in the act of an outburst.

"These FU Ori events are extremely important in our current understanding of the process of star formation but have remained almost mythical because they have been so difficult to observe," says Lynne Hillenbrand, professor of astronomy at Caltech and lead author of a new report on the findings appearing in The Astrophysical Journal.

"This is actually the first time we've ever seen one of these events as it happens in both optical and infrared light, and these data have let us map the movement of material through the disk and onto the star."

The newfound star, called Gaia 17bpi, was first spotted by the European Space Agency's Gaia satellite, which scans the sky continuously, making precise measurements of stars in visible light. When Gaia spots a change in a star's brightness, an alert goes out to the astronomy community.

A graduate student at the University of Exeter and co-author of the new study, Sam Morrell, was the first to notice that the star had brightened. Other members of the team then followed up and discovered that the star's brightening had been serendipitously captured in infrared light by NASA's asteroid-hunting NEOWISE satellite at the same time that Gaia saw it, as well as one-and-a-half-years earlier.

"While NEOWISE's primary mission is detecting nearby solar system objects, it also images all of the background stars and galaxies as it sweeps around the sky every six months," says co-author Roc Cutri, lead scientist for the NEOWISE Data Center at IPAC, an astronomy and data center at Caltech. "NEOWISE has been surveying in this way for five years now, so it is very effective for detecting changes in the brightness of objects."

NASA's infrared-sensing Spitzer Space Telescope also happened to have witnessed the beginning of the star's brightening phase twice back in 2014, giving the researchers a bonanza of infrared data.

The new findings shine light on some of the longstanding mysteries surrounding the evolution of young stars. One unanswered question is: How does a star acquire all of its mass? Stars form from collapsing balls of gas and dust.

With time, a disk of material forms around the star, and the star continues to siphon material from this disk. But, according to previous observations, stars do not pull material onto themselves fast enough to reach their final masses.

Theorists believe that FU Ori events - in which mass is dumped from the disk onto the star over a total period of about 100 years - may help solve the riddle. The scientists think that all stars undergo around 10 to 20 or so of these FU Ori events in their lifetimes but, because this stellar phase is often hidden behind dust, the data are limited. "Somebody sketched this scenario on the back of an envelope in the 1980s, and, after all this time, we still haven't done much better at determining the event rates," says Hillenbrand.

The new study shows, with the most detail yet, how material moves from the midrange of a disk, in a region located around 1 astronomical unit from the star, to the star itself. (An astronomical unit is the distance between Earth and the Sun.) NEOWISE and Spitzer were the first to pick up signs of the buildup of material in the middle of the disk.

As the material started to accumulate in the disk, it warmed up, giving off infrared light. Then, as this material fell onto the star, it heated up even more, giving off visible light, which is what Gaia detected.

"The material in the middle of the disk builds up in density and becomes unstable," says Hillenbrand. "Then it drains onto the star, manifesting as an outburst."

The researchers used the W. M. Keck Observatory and Caltech's Palomar Observatory to help confirm the FU Ori nature of the newfound star. Says Hillenbrand, "You can think of Gaia as discovering the initial crime scene, while Keck and Palomar pointed us to the smoking gun."

Research Report: "Gaia 17bpi: An FU Ori Type Outburst," Lynne Hillenbrand, Sam Morrell, Roc Cutri et al., 2018, to appear in the Astrophysical Journal


Related Links
California Institute Of Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Fragmenting disk gives birth to binary star 'odd couple'
Charlottesville VA (SPX) Dec 17, 2018
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that two young stars forming from the same swirling protoplanetary disk may be twins - in the sense that they came from the same parent cloud of star-forming material. Beyond that, however, they have shockingly little in common. The main, central star of this system, which is located approximately 11,000 light-years from Earth, is truly colossal - a full 40 times more massive than the Sun. The other star, whi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Four NASA-sponsored experiments set to launch on Virgin Galactic spacecraft

Russian Progress freighter to fly to ISS under short scheme for second time

Virgin Galactic reaches edge of space in historic flight

Virgin Galactic's SpaceShipTwo reaches space for first time

STELLAR CHEMISTRY
Largest piece of SLS rocket test hardware moved for testing

Static test qualifies crew safety launch abort motor for flight in cold conditions

Roscosmos to submit super-heavy rocket project to Government

Aerojet Rocketdyne awarded DARPA contract to design advanced opfires propulsion system

STELLAR CHEMISTRY
NASA's InSight takes its first selfie

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

InSight's robotic arm ready for some lifting on Mars

STELLAR CHEMISTRY
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

STELLAR CHEMISTRY
Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Update from ESA Council, December 2018

Spacecraft Repo Operations

CAT rules in favour of Ofcom's EAN authorisation decision

STELLAR CHEMISTRY
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Deep-learning technique reveals 'invisible' objects in the dark

Researchers develop mathematical solver for analog computers

STELLAR CHEMISTRY
Where did the hot Neptunes go

Narrowing the universe in the search for life

Dancing with the enemy

In search of missing worlds, Hubble finds a fast-evaporating exoplanet

STELLAR CHEMISTRY
Most Distant Solar System Object Ever Observed

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa

NASA's Juno mission halfway to Jupiter science

Record Setting Course-Correction Puts New Horizons on Track to Kuiper Belt Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.