. | . |
Wind, sea ice patterns point to climate change in western Arctic by Staff Writers Toronto, Canada (SPX) Apr 09, 2018
A major shift in western Arctic wind patterns occurred throughout the winter of 2017 and the resulting changes in sea ice movement are possible indicators of a changing climate, says Kent Moore, a professor of physics at the University of Toronto Mississauga. Thanks to data collected by buoys dropped from aircraft onto the Arctic Ocean's sea ice, Moore and colleagues at the University of Washington, where he spent the year as the Fulbright Visiting Chair in Arctic Studies, were able to observe this marked, anomalous shift in Arctic wind patterns and sea ice movement during the winter of 2017. Their study is published in Geophysical Research Letters. Usually, the western Arctic has relatively stable weather during the winter; it is home to a quasi-stationary region of high pressure known as the Beaufort High, which promotes "anti-cyclonic" winds that travel in a clockwise direction and move sea ice along with it. By contrast, the eastern Arctic has a more dynamic climate where cyclones are a common winter phenomenon with storms moving from Greenland towards Norway and the Barents Sea. "Last year, we looked at the buoy tracks in the western Arctic and saw that the sea ice was moving in a counter-clockwise pattern instead and wondered why," Moore says. "We discovered that storms were moving in an unexpected direction from the Barents Sea along the Siberian coast and into the western Arctic, bringing with them low-pressures that caused the collapse of the Beaufort High." Moore and colleagues believe that the low-pressure systems were able to make inroads into the western Arctic because of an unusually warm fall in 2016 resulting in thinner and less extensive sea ice. During the winter, this allowed for more oceanic heat to be transferred to the atmosphere and provided an additional energy source for these storms. "As a result of this additional energy source, the storms did not dissipate over the Barents Sea, as is usual, and were able to reach into the western Arctic," Moore says. "We reviewed more than 60 years of weather data from the Arctic and it appears that this collapse has never happened before." Generally, the Beaufort High drives sea ice motion throughout the Arctic as well as impacting ocean circulation over the North Atlantic Ocean. Any shift in movement patterns has the potential to affect the climate in these regions, as well as the Arctic ecosystem that depends on predictable areas of open water and ice. For example, as a result of this collapse, sea ice was thinner along the coast of the Canadian Arctic Archipelago, as well as in the southern Beaufort Sea last winter. Such changes can disturb Arctic food webs, stressing marine mammals and polar bears, especially if they are ongoing. "If this becomes part of the normal pattern - even if it happens every few years - it will mean that the climate is changing," Moore says. "We are still exploring all of the specific impacts."
Celestial sleuth unravels Ansel Adams' Alaska shoot San Marcos TX (SPX) Apr 05, 2018 Legendary photographer Ansel Adams created many stunning black-and-white landscape images during his lifetime, and one of his most striking masterpieces is Denali and Wonder Lake (formerly known as Mount McKinley and Wonder Lake). Adams considered Denali and Wonder Lake significant enough to select it as print number one in his limited edition Portfolio One, published in 1948. Despite taking detailed photographic notes, Adams was notoriously lax in recording the dates of his work, and controversy ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |