![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Potsdam, Germany (SPX) Jun 10, 2020
The East African Rift System (EARS) is a newly forming plate tectonic boundary at which the African continent is being separated into several plates. This is not a clean break. The system includes several rift arms and one or more smaller so-called microplates. According to GPS data, the Victoria microplate is moving in a counterclockwise rotation relative to Africa in contrast to the other plates involved. Previous hypotheses suggested that this rotation is driven by the interaction of a mantle plume - an upward flow of hot rock within the Earth's mantle - with the microplate's thick craton and the rift system. But now, researchers from the German Research Centre for Geosciences GFZ in Potsdam around Anne Glerum have found evidence that suggests that the configuration of weaker and stronger lithospheric regions predominantly controls the rotation of continental microplates and Victoria in particular. Their findings were published in the journal Nature Communications. In the paper, the researchers argue that a particular configuration of mechanically weaker mobile belts and stronger lithospheric regions in the EARS leads to curved, overlapping rift branches that under extensional motion of the major tectonic plates induces a rotation. They used 3D numerical models on the scale of the whole EARS to compute the lithosphere and upper mantle dynamics of the last 10 million years. "Such large models run on high performance computing clusters", says Anne Glerum, main author of the study. "We tested the predictive strength of our models by comparing their predictions of velocity with GPS-derived data, and our stress predictions with the World Stress Map, a global compilation of information on the present-day crustal stress field maintained since 2009. This showed that the best fit was obtained with a model that incorporates the first order strength distributions of the EARS' lithosphere like the one we prepared." There are many more continental microplates and fragments on Earth that are thought to rotate or have rotated. The lithosphere-driven mechanism of microplate rotation suggested in the new paper helps interpret these observed rotations and reconstruct plate tectonic motions throughout the history of the Earth.
![]() ![]() Australia's ancient geology controls the pathways of modern earthquakes Melbourne, Australia (SPX) Jun 05, 2020 Seismological and geological studies led by University of Melbourne researchers show the 2016 magnitude 6.0 Petermann earthquake produced a landscape-shifting 21 km surface rupture. The dimensions and slip of the fault plane were guided by zones of weak rocks that formed more than 500 million years ago. The unusually long and smooth rupture produced by this earthquake initially puzzled scientists as Australia's typically strong ancient cratons tend to host shorter and rougher earthquakes with grea ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |