![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Cambridge UK (SPX) Jun 26, 2018
Some of the earliest complex organisms on Earth - possibly some of the earliest animals to exist - got big not to compete for food, but to spread their offspring as far as possible. The research, led by the University of Cambridge, found that the most successful organisms living in the oceans more than half a billion years ago were the ones that were able to 'throw' their offspring the farthest, thereby colonising their surroundings. The results are reported in the journal Nature Ecology and Evolution. Prior to the Ediacaran period, between 635 and 541 million years ago, life forms were microscopic in size, but during the Ediacaran, large, complex organisms first appeared, some of which - such as a type of organism known as rangeomorphs - grew as tall as two metres. These organisms were some of the first complex organisms on Earth, and although they look like ferns, they may have been some of the first animals to exist - although it's difficult for scientists to be entirely sure. Ediacaran organisms do not appear to have mouths, organs or means of moving, so they are thought to have absorbed nutrients from the water around them. As Ediacaran organisms got taller, their body shapes diversified, and some developed stem-like structures to support their height. In modern environments, such as forests, there is intense competition between organisms for resources such as light, so taller trees and plants have an obvious advantage over their shorter neighbours. "We wanted to know whether there were similar drivers for organisms during the Ediacaran period," said Dr Emily Mitchell of Cambridge's Department of Earth Sciences, the paper's lead author. "Did life on Earth get big as a result of competition?" Mitchell and her co-author Dr Charlotte Kenchington from Memorial University of Newfoundland in Canada examined fossils from Mistaken Point in south-eastern Newfoundland, one of the richest sites of Ediacaran fossils in the world. Earlier research hypothesised that increased size was driven by the competition for nutrients at different water depths. However, the current work shows that the Ediacaran oceans were more like an all-you-can-eat buffet. "The oceans at the time were very rich in nutrients, so there wasn't much competition for resources, and predators did not yet exist," said Mitchell, who is a Henslow Research Fellow at Murray Edwards College. "So there must have been another reason why life forms got so big during this period." Since Ediacaran organisms were not mobile and were preserved where they lived, it's possible to analyse whole populations from the fossil record. Using spatial analysis techniques, Mitchell and Kenchington found that there was no correlation between height and competition for food. Different types of organisms did not occupy different parts of the water column to avoid competing for resources - a process known as tiering. "If they were competing for food, then we would expect to find that the organisms with stems were highly tiered," said Kenchington. "But we found the opposite: the organisms without stems were actually more tiered than those with stems, so the stems probably served another function." According to the researchers, one likely function of stems would be to enable the greater dispersion of offspring, which rangeomorphs produced by expelling small propagules. The tallest organisms were surrounded by the largest clusters of offspring, suggesting that the benefit of height was not more food, but a greater chance of colonising an area. "While taller organisms would have been in faster-flowing water, the lack of tiering within these communities shows that their height didn't give them any distinct advantages in terms of nutrient uptake," said Mitchell. "Instead, reproduction appears to have been the main reason that life on Earth got big when it did." Despite their success, rangeomorphs and other Ediacaran organisms disappeared at the beginning of the Cambrian period about 540 million years ago, a period of rapid evolutionary development when most major animal groups first appear in the fossil record.
![]() ![]() T. rex could not stick out its tongue: study Tampa (AFP) June 20, 2018 The Tyrannosaurus rex is crowned the "lizard king" of the dinosaurs, a historically fierce meat-eater often depicted lashing out its tongue. But researchers said Wednesday this would have been anatomically impossible. That's because the long-extinct T. rex likely had a tongue that was affixed to the bottom of its mouth, much like an alligator or crocodile, said the study in the journal PLOS ONE. "They've been reconstructed the wrong way for a long time," said co-author Julia Clarke, a professor ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |