. | . |
Why do galaxies stop making stars by Staff Writers Pittsburgh PA (SPX) Sep 06, 2022
Six billion years ago, two galaxies were colliding, their combined forces hurling a stream of gas hundreds of thousands of light years away. Reported this week by a team including Pitt astronomers, that unusual feature provides a new possible explanation for why galaxies stop forming stars. "One of the biggest questions in astronomy is why the biggest galaxies are dead," said David Setton, a sixth-year physics and astronomy Ph.D. student in the Kenneth P. Dietrich School of Arts and Sciences. "What we saw is that if you take two galaxies and smash them together, that can actually rip gas out of the galaxy itself." In the part of space we inhabit, most large galaxies have long ago stopped making new stars. Only recently have astronomers started looking further away - and thus farther back in time - with the tools to find recently dead galaxies and figure out how they got that way. The cold gas that coalesces to form stars may escape from galaxies by several means, blown away by black holes or supernovae. And there's an even simpler possibility, that galaxies simply quiet down when they've used up all the raw materials for creating stars. Looking for examples of galaxies that recently shut off star formation, the team of researchers used the Sloan Digital Sky Survey, which has catalogued millions of galaxies with a telescope at Apache Point Observatory in New Mexico. Along with observations from the ground-based radio astronomy network ALMA, the researchers found such a "post-starburst" galaxy seven billion light years away that still showed signs of available star-forming fuel. "So then we needed an explanation," said Setton. "If it has gas, why is it not forming stars?" A second pass with the Hubble Space Telescope then revealed the distinctive "tail" of gas extending from the galaxy. From that feature, like forensic examiners working through a telescope, the researchers were able to reconstruct the galaxies' collision and the tremendous gravitational force that tore apart stars and flung a stream of gas a distance more than two Milky Ways laid end-to-end. "That was the smoking gun," said Setton. "We were all so struck by it. You just don't see this much gas this far away from the galaxy." The team, including Pitt Physics and Astronomy Associate Professor Rachel Bezanson and alum Margaret Verrico (A&S '21) along with colleagues at Texas A and M University and several other institutions, reported their results in the Astrophysical Journal Letters on Aug. 30. Such an extreme meeting of galaxies is likely rare, Setton said, but because gravity pulls large objects into dense groups, such an event is more common than you might anticipate. "There are all these big voids in space, but all of the biggest galaxies live in the spaces where all of the other big galaxies live," he said. "You expect to see these sorts of big collisions once every 10 billion years or so for a system this massive." Setton's role on the project was to determine the galaxy's size and shape, and he discovered that other than the tail, the post-merger galaxy looked surprisingly normal. Once the tail fades in a few hundred million years, it may look just like any other dead galaxy - further suggesting that the process may be more common than it appears, something the team is following up now with another survey. Along with providing clues for how the universe became the way it is, Setton said such collisions reflects one possibility for the future of our own galaxy. "If you go do a dark place and look up at the night sky, you can see the Andromeda Galaxy, which in five billion years might do exactly this to our Milky Way," Setton said. "It's helping answer the fundamental question of what's going to happen to the Milky Way in the future."
Research Report:Star formation suppression by tidal removal of cold molecular gas from an intermediate-redshift massive post-starburst galaxy
ALMA witnesses deadly star-slinging tug-of-war between merging galaxies Charlottesville VA (SPX) Sep 06, 2022 While observing a newly-dormant galaxy using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Hubble Space Telescope (HST), scientists discovered that it had stopped forming stars not because it had used up all of its gas but because most of its star-forming fuel had been thrown out of the system as it merged with another galaxy. The result is a first for ALMA scientists. What's more, if proven common, the results could change the way scientists think about galaxy mergers and deaths. The ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |