. 24/7 Space News .
TECTONICS
Which forces control the elevation of mountains?
by Staff Writers
Potsdam, Germany (SPX) Jun 03, 2022

The Puna Plateau is part of the Central Andes, a mountain belt in which the elevation is mainly driven by lithospheric strength and tectonic forces.

Scientists have come up with a new classification scheme for mountain belts that uses just a single number to describe whether the elevation of the mountain belt is controlled mainly by weathering and erosion or by properties of the Earth's crust, i.e., the lithospheric strength: the "Beaumont number" (Bm). It's named after Chris Beaumont, a scientist who, together with his team, developed coupled models of surface processes and tectonic forces. The scientists report about their findings in the current issue of Nature.

A Beaumont number between 0.4 and 0.5 means that the mountains are in a so-called flux steady state in which the controlling factors of mountain growth are tectonic forces and the lithospheric strength, balanced by weathering processes as, for example, in Taiwan. With a Bm value lower than 0.4, mountains are also in a flux steady state but with erosion as controlling factor like the Southern Alps of New Zealand. A Beaumont number above 0.5 means that the mountains still grow (non-steady state) with lithospheric strength controlling the process. Examples for this type are the Himalaya-Tibet mountains and the Central Andes.

This classification is resolving a long-standing question whether tectonic forces and strength of the Earth's crust are the controlling factors of mountain elevation or weathering processes. The new study says it can be one or the other - depending on geographic location, climate and underground properties.

The team of scientists led by Sebastian G. Wolf of Bergen University in Norway used a new coupled surface process and mantle-scale tectonic model for their study by combining the thermomechanical tectonic model FANTOM with the landscape evolution model FastScape. Thus, they were able to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years.

Jean Braun of the GFZ German Research Centre for Geosciences, who co-authored the paper, says: "With our Beaumont number we can determine to which proportion tectonics, climate, and crustal strength control the height of mountain belts. And, for most mountain belts, this can be done without complex measurements or assumptions; all that is needed is a knowledge of the rate of convergence obtained from present-day plate velocities or plate reconstructions, the height of the mountain obtained from a topographic map and the widening rate obtained from the geological record. In a nutshell: Whether a mountain is short or tall is the product of slow or fast convergence, wet or dry climate, or strong or weak crust."

The Beaumont number shows which of these three factors is dominating.

Research Report:Topography of mountain belts controlled by rheology and surface processes


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
The link between temperature, dehydration and tectonic tremors in Alaska
Kobe, Japan (SPX) Jun 03, 2022
A Kobe University research group has shed light on how low-frequency tectonic tremors occur; these findings will contribute towards better predictions of future megathrust earthquakes. In addition to the subducting Pacific plate, the Alaska subduction zone is also characterized by a subducting oceanic plateau called the Yakutat terrane. Low-frequency tectonic tremors, which are a type of slow earthquake, have only been detected in the subducted Yakutat terrane area. However, the mechanism by which ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
ILC Dover becomes a provider of spacesuits for Boeing's Starliner

NanoAvionics and Gama to set sails in space

Boeing Starliner completes key test mission to ISS, with some hiccups

Boeing's Starliner faces one more challenge as it returns to Earth

TECTONICS
Southern Launch receives further Government funding

Debris from Chinese rocket reenters atmosphere, mostly burning up

Upper Stage Propulsion System for future Artemis mission reaches major milestone

SpaceX's Transporter 5 launches with remains of 47 people for 'space burial'

TECTONICS
Up, Up and Away - Sols 3487-3490

Why Did Mars Dry Out? New Study Points To Unusual Answers

Ingenuity Adapts for Mars Winter Operations

Ingenuity Mars Helicopter captures video of record flight

TECTONICS
China's space tracking ship departs for 100th mission

Researchers start planting space-bred seeds returned by Shenzhou-13

New cargo spacecraft being built

The beginning of a multi-spacecraft exploration in Martian space by China, the US and Europe

TECTONICS
Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

Commercial Space Exec: Hands-On Work Can Launch Careers

TECTONICS
Liquid platinum at room temperature

Ancient ocean floors could help search for critical minerals

NFT market sees first insider trading case in US

Building stock and waste as the important potential resources of Urban mining

TECTONICS
Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

Why haven't we discovered co-orbital exoplanets? Could tides offer a possible answer?

Unistellar and SETI Institute expand Worldwide Citizen-Science Astronomy Network

Planets of binary stars as possible homes for alien life

TECTONICS
Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.