. | . |
When ultrafast laser pulse meets magnetic materials by Staff Writers Beijing, China (SPX) Feb 21, 2017
Ultrafast non-equilibrium magnetization in correlated spin systems is extensively studied in recent years. At both fundamental and application levels, ultrafast laser pulse excitation and dynamics measurement provide an effective path to the fast optical detection, as well as for the control of the magnetic order. Measuring the time-resolved magneto-optical Kerr effect (TR-MOKE), ultrafast magnetic relaxation phenomenon such as ultrafast demagnetization and uniform precession are observed in magnetic media. The optically excited magnetization precession in magnetic media exhibits the temporal response of magnetization when the effective magnetic field is instantaneously changed by ultrafast laser pulse excitation and provides information about the spin dynamics microscopically. Recently, extensive attentions have been paid to the BiFeO3 (BFO) and Sr-doped LaMnO3 heterostructure, for a series of novel physical properties that originate from the antiferromagnetic (AFM) and ferromagnetic (FM) exchange interaction across the heterointerface. In an article recently published in SCIENCE CHINA Physics, Mechanics and Astronomy, researchers at the Institute of Physics, Chinese Academy of Sciences, reported their investigation on the ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with epitaxial grown BiFeO3 (BFO) coating layers. These researchers fabricated the BFO/LSMO heterostructure using the laser molecular beam epitaxy system. As they designed, 10-nm-thick LSMO thin films were deposited on (001) SrTiO3 (STO) single crystal substrates, and 3- or 20-nm-thick BFO films were coated onto the LSMO films. X-ray diffraction was carried out for structural characterization. With the ultrafast time-resolved magneto-optical Kerr effect (TR-MOKE) measurement system they built, the researchers measured the temporal response of the samples they prepared within the time scale of ~500 ps by pump-probe technique. Two distinct types of oscillations were launched after the pump pulse excited the sample. The high-frequency oscillation at ~103 GHz was independent of the external magnetic field, which was ascribed to the coherent acoustic phonons generated in the STO substrates by the pump-pulse irradiation. The other oscillation mode occurred at a lower frequency (10-30 GHz), exhibiting a positive dependence on the external magnetic field. This relation confirmed the oscillation behavior to be the optically triggered magnetization precession, which has been extensively observed in magnetic media previously in ultrafast TR-MOKE measurements. Intriguingly, by comparing the optically excited precession behavior of the different samples under the same external magnetic fields, the oscillation period of the precession appeared to be expanded for the BFO-coated LSMO films, and the sample coated with 20-nm-thick BFO exhibited a longer oscillation period than that coated with 3-nm-thick BFO. Fourier transforms show distinct shifts of the precession frequency peak position in each case for the same external magnetic field, thus confirmed the frequency modulation of the magnetization precession. The researchers analyzed the effective magnetic field in the LSMO film and attributed the reduction of the precession frequency to the suppression of the anisotropy by BFO coating layers. Moreover, they suppose such behavior was induced by the exchange interaction across the BFO/LSMO interface. "Investigating the optically excited magnetization precession in magnetic oxides may shed light on potential application in spintronics devices" wrote the researchers, "Our findings may provide an effective approach for controlling the spin behavior in magnetic oxide films through structural design". Research paper: "Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films"
Pasadena CA (JPL) Feb 15, 2017 Thought your Internet speeds were slow? Try being a space scientist for a day. The vast distances involved will throttle data rates to a trickle. You're lucky if a spacecraft can send more than a few megabits per second (Mbps) - a pittance even by dial-up standards. But we might be on the cusp of a change. Just as going from dial-up to broadband revolutionized the Internet and made high-re ... read more Related Links Science China Press Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |