. 24/7 Space News .
STELLAR CHEMISTRY
When light loses symmetry, it can hold particles
by Staff Writers
Wuhan, China (SPX) Jan 28, 2022

Mode symmetry-broken mechanism for enhancing optical trapping behavior.

Optical tweezers use light to immobilize microscopic particles as small as a single atom in 3D space. The basic principle behind optical tweezers is the momentum transfer between light and the object being hold. Much analogous to the water pushing on a dam that blocks the stream, light pushes onto objects (and also attracts them) that make the light bend.

This so-called optical force can be designed to point to a certain point in space, where the particle will be held. In fact, the optical trapping technique has so far won two Nobel Prizes, one in 1997 for holding and cooling down single atoms, a second in 2018 for offering biologists with a tool to study single biomolecules such as DNA and proteins.

Researchers led by Prof. Yuanjie Pang at Huazhong University of Science and Technology (HUST), China, are interested in fiber optical tweezers, where the light and the particles are manipulated at the tip of an optical fiber. This technique eliminates the requirement of conventional, bulky, optical accessories such as microscope objectives, lenses and mirrors.

Their idea is to start with a perfectly annular symmetric light mode that can only transmitted in the optical fiber and will not leak into the surrounding space through the fiber tip, and have a particle to break the mode symmetry and thereby scatter light into the space.

This way, by changing the symmetry and the momentum of the light, the particle receives a reactive force that holds it at the fiber tip. The researchers predict potential applications such as performing an in-vivo single bioparticle manipulating experiment by using the fiber optical tweezer as an endoscope in the interior of a living animal.

Research Report: "Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide"


Related Links
Huazhong University of Science and Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Making matter from collisions of light
Washington DC (SPX) Jan 26, 2022
Nuclear scientists have used a powerful particle accelerator to create matter directly from collisions of light. Scientists predicted this process in the 1930s, but it has never been achieved in a single direct step. The researchers accelerated two beams of gold ions to close to the speed of light in opposite directions. At such speeds, each gold ion is surrounded by particles of light (real photons) generated by the ion's perpendicular magnetic and electric fields. When the ions graze past one an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Caltech names Laurie Leshin Director of JPL

US issues visa to Russian ISS cosmonaut

Beaming with science

SCOUT releases autonomy software to enable safer and less complex space operations

STELLAR CHEMISTRY
Rocket Lab to provide Venture Class Launch Services for NASA

Skyroot Aerospace to fly its rocket from mobile launch pad in 2022

Astra Awarded VADR Contract by NASA

New tech spurs spaceplane vision: halfway around world in 40 minutes

STELLAR CHEMISTRY
SwRI scientist helps confirm liquid water beneath Mars south polar cap

Extremely harsh volcanic lake shows how life might have existed on Mars

Sols 3367-3368: The Prow to take another bow

Crater tree rings

STELLAR CHEMISTRY
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to explore more in space science next five years: White paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

STELLAR CHEMISTRY
Blue Origin set to acquire Honeybee Robotics

Advances in Space Transportation Systems Transforming Space Coast

EU launches 'game changer' space startup fund

Summit to ignite Europe's bold space ambitions

STELLAR CHEMISTRY
Space Power to revolutionize satellite power using laser beaming

China releases new-generation spacecraft OS

NASA aims to make observations from space junk collision with Moon

New DAF software factory aims to digitally transform AFRL

STELLAR CHEMISTRY
Extreme exoplanet has a complex and exotic atmosphere

A planetary dynamical crime scene at 14 Herculis

Scientists are a step closer to finding planets like Earth

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

STELLAR CHEMISTRY
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.