![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Chicago IL (SPX) Aug 30, 2017
Good things come in small packages. This is especially true in the world of portable wireless communications systems. Cell phones, wearables, and implantable electronics have shrunk over time, which has made them more useful in many cases. But a critical component of these devices - the antenna - hasn't followed suit. Researchers haven't been able to get them much smaller, until now. In a paper published online Tuesday in Nature Communications, Nian Sun, professor of electrical and computer engineering at Northeastern, and his colleagues describe a new approach to designing antennas. The discovery enables researchers to construct antennas that are up to a thousand times smaller than currently available antennas, Sun said. "A lot of people have tried hard to reduce the size of antennas. This has been an open challenge for the whole society," Sun said. "We looked into this problem and thought, 'why don't we use a new mechanism?'" Traditional antennas are built to receive and transmit electromagnetic waves, which travel fast - up to the speed of light. But electromagnetic waves have a relatively long wavelength. That means antennas must maintain a certain size in order to work efficiently with electromagnetic radiation. Instead of designing antennas at the electromagnetic wave resonance - so they receive and transmit electromagnetic waves - researchers tailored the antennas to acoustic resonance. Acoustic resonance waves are roughly 10 thousand times - smaller than electromagnetic waves. This translates to an antenna that's one or two orders of magnitude smaller than even the most compact antennas available today. Since acoustic resonance and electromagnetic waves have the same frequency, the new antennas would still work for cell phones and other wireless communication devices. And they would provide the same instantaneous delivery of information. In fact, researchers found their antennas performed better than traditional kinds. Tiny antennas have big implications, especially for Internet of Things devices, and in the biomedical field. For example, Sun said the technology could lead to better bioinjectible, bioimplantable, or even bioinjestible devices that monitor health. One such application that neurosurgeons are interested in exploring is a device that could sense neuron behavior deep in the brain. But bringing this idea to life has stumped researchers, until now. "Something that's millimeters or even micrometers in size would make biomedical implantation much easier to achieve, and the tissue damage would be much less," Sun said.
![]() Seoul, South Korea (SPX) Aug 28, 2017 How do you feel when technology you saw in a movie is made into reality? Collaboration between the electrical engineering and textile industries has made TVs or smartphone screens displaying on clothing a reality. A research team led by Professor Kyung Cheol Choi at the School of Electrical Engineering presented wearable displays for various applications including fashion, IT, and healthca ... read more Related Links Northeastern University Satellite-based Internet technologies
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |