. 24/7 Space News .
IRON AND ICE
What part of a space rock survives to the ground?
by Staff Writers
Mountain View CA (SPX) Aug 09, 2022

File illustration - The Blaubeuren Meteorite.

When a small asteroid enters Earth's atmosphere from space, its surface is brutally heated, causing melting and fragmenting. Therefore, it was somewhat of a mystery why the rocks near the surface survive to the ground as meteorites. That mystery is solved in a new study of the fiery entry of asteroid 2008 TC3, published online in Meteoritics and Planetary Science.

"Most of our meteorites fall from rocks the size of grapefruits to small cars," says lead author and meteor astronomer Peter Jenniskens of the SETI Institute and NASA Ames Research Center. "Rocks that big do not spin fast enough to spread the heat during the brief meteor phase, and we now have evidence that the backside survives to the ground."

In 2008, a 6-meter-sized asteroid called 2008 TC3 was detected in space and tracked for over 20 hours before it hit the Earth's atmosphere, creating a bright meteor that disintegrated over the Nubian Desert of Sudan. The breakup scattered a shower of meteorites over a 7 x 30 km area. Jenniskens collaborated with University of Khartoum professor Muawia Shaddad and his students to recover these meteorites.

"In a series of dedicated search campaigns, our students recovered over 600 meteorites, some as big as a fist, but most no bigger than a thumbnail," says Shaddad. "For each meteorite, we recorded the find location."

While conducting grid searches perpendicular to the asteroid path, the researchers were surprised to find that the larger fist-sized meteorites were spread out more than the smaller meteorites. Teaming up with NASA's Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center, they decided to investigate.

"While the asteroid approached Earth, its brightness flickered from spinning and tumbling," says theoretical astronomer Darrel Robertson of ATAP. "Because of that, asteroid 2008 TC3 is unique in that we know the shape and orientation of the asteroid when it entered Earth's atmosphere."

Robertson created a hydrodynamic model of the entry of 2008 TC3 into Earth's atmosphere that showed how the asteroid melts and breaks up. The observed altitudes of meteor brightness and dust clouds were used to calibrate the altitude of phenomena recognized in the model.

"Because of the high speed coming in, we found that the asteroid punched a near vacuum wake in the atmosphere," says Robertson. "The first fragments came from the sides of the asteroid and tended to move into that wake, where they mixed and fell to the ground with low relative speeds."

While falling to the ground, the smallest meteorites were soon stopped by friction with the atmosphere, falling close to the breakup point, while larger meteorites were harder to stop and fell further downrange. As a result, most recovered meteorites were found along a narrow 1-km wide strip in the asteroid's path.

"The asteroid melted more and more at the front until the surviving part at the back and bottom-back of the asteroid reached a point where it suddenly collapsed and broke into many pieces," said Robertson. "The bottom-back surviving as long as it did was because of the shape of the asteroid."

No longer trapped by the shock from the asteroid itself, the shocks from the individual pieces now repulsed them, sending these final fragments flying outwards with much higher relative speed.

"The largest meteorites from 2008 TC3 were spread wider than the small ones, which means that they originated from this final collapse," said Jenniskens. "Based on where they were found, we concluded that these pieces stayed relatively large all the way to the ground."

The location of the large meteorites on the ground still reflects their location in the back and bottom-back part of the original asteroid.

"This asteroid was a mixed bag of rocks," said co-author Cyrena Goodrich of the Lunar and Planetary Institute (USRA). Goodrich led a team of meteoriticists who determined the meteorite type of each recovered fragment in the large mass area.

The researchers found that the different meteorite types were spread randomly on the ground, and therefore were also spread randomly in the original asteroid.

"That agrees with the fact that other meteorites of this kind, albeit on a much smaller scale, also contain random mixtures," said Goodrich.

These results may also help understand other meteorite falls. Asteroids are exposed to cosmic rays while in space, creating a low level of radioactivity and more near the surface.

"From that radioactivity, we often find that the meteorites did not come from the better-shielded interior," said Jenniskens. "We now know they came from the surface at the back of the asteroid."

Research Report:Bolide fragmentation: What parts of asteroid 2008 TC3 survived to the ground?


Related Links
SETI Institute
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Perseid meteor shower peaks Aug. 12, but the full Moon may spoil the show
Washington DC (UPI) Aug 5, 2021
The Perseid meteor shower, one of Earth's biggest, is set to peak with best viewing starting Aug. 11. The annual meteor shower will peak the next day, but this year the full moon may interfere with visibility, according to NASA. "Sadly, this year's Perseids peak will see the worst possible circumstances for spotters," NASA astronomer Bill Cooke said in a statement. "Most of us in North America would normally see 50 or 60 meteors per hour, but this year, during the normal peak, the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA Goddard's 'Web Around Asteroid Bennu' Shows in SIGGRAPH Film Fest

US should end ISS collaboration with Russia

Exposed! International Space Station tests organisms, materials in space

Russia launches Iranian satellite amid Ukraine war concerns

IRON AND ICE
J-Space partners with Virgin Orbit to bring sovereign air-launch capability to South Korea

The space economy gets major tech advancement with hybrid mobility packages

NASA moves up launch of massive moon rocket

CST signs agreement with Gilmour Space for the launch of 50kg to LEO

IRON AND ICE
NASA explains strange stringy object photographed by Perseverance rover

Surprise, surprise: Subsurface water on Mars defy expectations

Ten Earth years later and Curiosity is still exploring Mars

WVU space robotics research helps Mars rovers find their footing

IRON AND ICE
Wentian's small mechanical arm completes in-orbit tests

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

Harvest from heavenly breeding

Chinese commercial carrier rocket Smart Dragon-3 completes ground tests

IRON AND ICE
HKATG tooling up for satellite mass production

SpaceX launches 46 new Starlink satellites into orbit

Space Accelerator catalyses multi-million pound investment

AST SpaceMobile's BlueWalker 3 test satellite arrives at Cape Canaveral

IRON AND ICE
Antaris close seed funding round to accelerate development of software solutions for space

Kayhan Space unveils next-gen spaceflight safety platform

Spaceflight prepares propulsive Sherpa OTV to launch on upcoming Starlink mission

The future of NASA's laser communications

IRON AND ICE
Scientists detect newborn planet that could be forming moons

Brightest stars in the night sky can strip Neptune-sized planets to their rocky cores

A cosmic tango points to a violent and chaotic past for distant exoplanet

New research on the emergence of the first complex cells challenges orthodoxy

IRON AND ICE
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.