. | . |
What drives the accelerating expansion of the universe by Staff Writers Vancouver, Canada (SPX) May 16, 2017
UBC physicists may have solved one of nature's great puzzles: what causes the accelerating expansion of our universe? PhD student Qingdi Wang has tackled this question in a new study that tries to resolve a major incompatibility issue between two of the most successful theories that explain how our universe works: quantum mechanics and Einstein's theory of general relativity. The study suggests that if we zoomed in-way in-on the universe, we would realize it's made up of constantly fluctuating space and time. "Space-time is not as static as it appears, it's constantly moving," said Wang. "This is a new idea in a field where there hasn't been a lot of new ideas that try to address this issue," said Bill Unruh, a physics and astronomy professor who supervised Wang's work. In 1998, astronomers found that our universe is expanding at an ever-increasing rate, implying that space is not empty and is instead filled with dark energy that pushes matter away. The most natural candidate for dark energy is vacuum energy. When physicists apply the theory of quantum mechanics to vacuum energy, it predicts that there would be an incredibly large density of vacuum energy, far more than the total energy of all the particles in the universe. If this is true, Einstein's theory of general relativity suggests that the energy would have a strong gravitational effect and most physicists think this would cause the universe to explode. Fortunately, this doesn't happen and the universe expands very slowly. But it is a problem that must be resolved for fundamental physics to progress. Unlike other scientists who have tried to modify the theories of quantum mechanics or general relativity to resolve the issue, Wang and his colleagues Unruh and Zhen Zhu, also a UBC PhD student, suggest a different approach. They take the large density of vacuum energy predicted by quantum mechanics seriously and find that there is important information about vacuum energy that was missing in previous calculations. Their calculations provide a completely different physical picture of the universe. In this new picture, the space we live in is fluctuating wildly. At each point, it oscillates between expansion and contraction. As it swings back and forth, the two almost cancel each other but a very small net effect drives the universe to expand slowly at an accelerating rate. But if space and time are fluctuating, why can't we feel it? "This happens at very tiny scales, billions and billions times smaller even than an electron," said Wang. "It's similar to the waves we see on the ocean," said Unruh. "They are not affected by the intense dance of the individual atoms that make up the water on which those waves ride." Their paper was published last week in Physical Review D
Melbourne, Australia (SPX) May 02, 2017 Australian and German researchers have collaborated to develop a genetic algorithm to confirm the rejection of classical notions of causality. Dr Alberto Peruzzo from RMIT University in Melbourne said: "Bell's theorem excludes classical concepts of causality and is now a cornerstone of modern physics. "But despite the fundamental importance of this theorem, only recently was the firs ... read more Related Links University of British Columbia Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |