. 24/7 Space News .
TECTONICS
What drives plate tectonics?
by Staff Writers
Beijing, China (SPX) Sep 05, 2019

These are global paleomagnetic plate reconstructions a. 270 Ma, b. 180 Ma, and inset the Present Tethyan Realm.

Plate tectonics is founded in the late 1960s, and it concerns the distribution and movements of plates, the upper most layer of the Earth. Plate movements not only control the distributions of the earthquakes, volcanos, and mineral resources in the crust, but also effect the ocean and atmospheric circulations above the crust. Therefore, plate tectonics has been regarded as the fundamental unifying paradigm for understanding the history of Earth.

However, it is not like the widely accepted kinematics of plate tectonics, the driving force of plate tectonics is still one of the most challenging problems since the birth of the theory. The subduction of oceanic slabs is considered as the dominant driving force based on observations of Cenozoic subduction systems along the circum-Pacific region. However, the difficulty to observe the oceanic subduction slabs beneath collisional orogens hampers the ability to quantitatively evaluate the role of subducting oceanic slabs.

Alternative driving forces such as ridge push, continental slab-pull, plume upwelling and large-scale mantle convection have been proposed at different subduction-collision belts along the Tethyan Realm (Fig 1), the largest continental collisional zone. The Tethyan evolution can be summarized as many continental fragments were ruptured sequentially from Gondwana and then drift towards Laurasia/Eurasia.

Scientists from the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing found "switches" between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.

They proposed that the "switches" were all controlled by oceanic subductions. All oceanic Tethyan slabs acted as a 'one-way train' that transferred the Gondwana-detached continents in the south into the terminal in the north, so they depicted the whole scenario as "Tethyan one-way train" (Figure. 2a and b).

The engine of the "train" was the negative buoyancy of the subducting oceanic slabs. The results also shed light on supercontinent assembly and breakup cycles. Subductions not only assemble the supercontinent but also effectively break-up the supercontinent.

The new results will not close the discussions on driving force of plate tectonics, but more future Tethyan research may test the new proposal and improve the understanding of how plate tectonics works. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics.

Research paper


Related Links
Science China Press
Tectonic Science and News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECTONICS
New model suggests lost continents for early Earth
Adelaide, Australia (SPX) Jul 08, 2019
A new radioactivity model of Earth's ancient rocks calls into question current models for the formation of Earth's continental crust, suggesting continents may have risen out of the sea much earlier than previously thought but were destroyed, leaving little trace. Scientists at the University of Adelaide have published two studies on a model of rock radioactivity over billions of years which found that the Earth's continental crust may have been thicker, much earlier than current models suggest, w ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Circus reinvented in Montreal, this time with high-tech vibe

China's satellite tests pulsar navigation for future deep space exploration

India not poor, has resources for space program says ISRO chief

Spacecraft carrying Russian humanoid robot docks at ISS

TECTONICS
China's first medium-scale launcher with LOX LCH4 propellants ZQ-2 soliciting payloads worldwide

New Delhi in Talks With Moscow Over Rocket Engines for Indian Space Program

'Game-Changer' for Cosmic Research: NASA Chief Touts Nuclear Powered Spacecraft

Scientific Samples Make the Journey Back to Earth aboard SpaceX's Dragon

TECTONICS
NASA engineers attach Mars Helicopter to Mars 2020 rover

NASA Invites Students to Name Next Mars Rover

NASA's Mars Helicopter Attached to Mars 2020 Rover

ExoMars rover ready for environment testing

TECTONICS
China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

TECTONICS
ESA and GomSpace Luxembourg sign contract for continued constellation management development

New Iridium Certus transceiver for faster satellite data now in live testing

KLEOS Space funding will start procurement of 2nd cluster of satellites

ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

TECTONICS
Chipping away at how ice forms could keep windshields, power lines ice-free

In praise of the big pixel: Gaming is having a retro moment

FEFU scientists developed brand-new rapid strength eco-concrete

Smarter experiments for faster materials discovery

TECTONICS
Deep-sea sediments reveal solar system chaos: An advance in dating geologic archives

Exoplanets Can't Hide Their Secrets from Innovative New Instrument

Hints of a volcanically active exomoon

Canadian astronomers determine Earth's fingerprint

TECTONICS
ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed

Giant Impact Disrupted Jupiter's Core









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.