![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Moscow, Russia (SPX) Aug 30, 2017
A team of scientists from Russia and Canada has analyzed the effect of space conditions on the protein composition in blood samples of 18 Russian cosmonauts. The results indicated many significant changes in the human body caused by space flight. These changes are intended to help the body adapt and take place in all the major types of human cells, tissues, and organs. The results of the research have been published in the prestigious scientific journal Nature Scientific Reports. Skoltech and MIPT Professor Evgeny Nikolaev initiated this research, and he is a corresponding author of the study. The effects of spaceflight on the human body have been studied actively since the mid-20th century. It is widely known that space conditions influence metabolism, thermoregulation, heart biorhythms, muscle tonus, the respiration system and other physiological aspects of the human body function. However, the molecular mechanisms which drive the physiological changes caused by space flights remain unknown. Proteins are key players in the adaptive processes in an organism, so the scientists decided to focus on them. To gain a deeper understanding of the changes in human physiology during space travel, the research team quantified concentrations of 125 proteins in the blood plasma of 18 Russian cosmonauts who had been on long-duration missions to the International Space Station. The blood was initially taken from them 30 days prior to their flights, and again immediately after their return to Earth and finally seven days after that. This timing was chosen as it helped the scientists to identify trends in protein concentration changes and see how fast the protein concentrations returned to their normal levels prior to the flight. Protein concentrations were measured using a mass spectrometer. This technology makes it possible to identify a particular molecule and perform a quantitative analysis of a mixture of substances (count the exact number of molecules). As a result of the study, the scientists found proteins whose concentrations remained unchanged, as well as those whose concentrations did change, but recovered rapidly to their pre-flight levels and those whose levels recovered very slowly after the cosmonaut's return to Earth. "For the research, we took a set of proteins - non-infectious diseases biomarkers. The results showed that in weightlessness, the immune system acts like it does when the body is infected because the human body doesn't know what to do and tries to turn on all possible defense systems. :For this study, we began by using quantitative proteomics to study the cosmonauts' blood indicators, so we detected not only the presence of a protein but its amount as well. We plan to use a targeted approach in the future to detect more specific proteins responsible for the human response to space conditions. To do this, the cosmonauts will have to take blood tests while in orbit," said Professor Nikolaev. The factors that affect the human body during spaceflight are very interesting because they are different to those that influenced human evolution on Earth. It is not known if the human body has mechanisms responsible for rapidly adapting to such major changes. The results of the study indicate that such mechanisms probably do not exist because, during space flight, these adaptations take place in all the major types of human cells, tissues, and organs. This indicates that the human body does not know what to do and is trying to do everything in its power.
![]() Houston TX (SPX) Aug 24, 2017 You may think you're just an average Joe, but according to your metabolomics data your body is percolating some expressive information about your daily life. "Metabolomics measures small molecules called metabolites that reflect the physiology of the body, and can reveal specific details about you. Researchers can see specific metabolites - such as caffeine - in your blood, and form hypoth ... read more Related Links Moscow Institute of Physics and Technology Space Medicine Technology and Systems
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |