|
. | . |
|
by Staff Writers Montreal, Canada (SPX) Oct 02, 2008
Theoretical models of stellar formation propose the existence of very massive stars that can attain up to 150 times the mass of our Sun. Until very recently, however, no scientist had discovered a star of more than 83 solar masses. Now an international team of astrophysicists, led by Universite de Montreal researchers from the Centre de recherche en astrophysique du Quebec (CRAQ), has found and "weighed" the most massive star to date. Olivier Schnurr, Jules Casoli and Andre-Nicolas Chene, all graduates of the Universite de Montreal, and professors Anthony F. J. Moffat and Nicole St-Louis, successfully "weighed" a star of a binary system with a mass 116 times greater than that of the Sun, waltzing with a companion of 89 solar masses, doubly beating the previous record and breaking the symbolic barrier of 100 solar masses for the first time. Located in the massive star cluster NGC 3603, the supermassive star system, known under the name of A1, has a rotation period of 3.77 days. The masses were calculated by a combination of observations made with the SINFONI instrument, an integral field spectrograph operating on the Very Large Telescope on the site of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) in Chile, and infrared images coming from the Hubble Space Telescope. The stars forming the A1 system are so massive and bright that the light they transmit shows characteristics that only "Wolf-Rayet" stars possess. Within the context of this work, a binary system transmitting X-rays at a power almost never seen in our Galaxy was also discovered near NGC 3603-A1.
Related Links CRAQ Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |