24/7 Space News
STELLAR CHEMISTRY
Webb observes a globular cluster sparkling with separate stars
Image of the globular cluster M92 captured by the James Webb Space Telescope's NIRCam instrument. The black strip in the center is a chip gap, the result of the separation between NIRCam's two long-wavelength detectors. The gap covers the dense center of the cluster, which is too bright to capture at the same time as the fainter, less dense outskirts of the cluster. This image is a composite of four exposures using four different filters: F090W (0.9 microns in wavelength) is shown in blue; F150W (1.5 microns) in cyan; F277W (2.77 microns) in yellow; and F444W (4.44 microns) in red. The image is about 5 arcminutes (39 light-years) across. Download the full image of M92 from the Resource Gallery. Image credit: NASA, ESA, CSA, A. Pagan (STScI).
Webb observes a globular cluster sparkling with separate stars
by Staff Writers
Baltimore MD (SPX) Feb 23, 2023

On June 20, 2022, the James Webb Space Telescope spent just over one hour staring at Messier 92 (M92), a globular cluster 27,000 light-years away in the Milky Way halo. The observation - among the very first science observations undertaken by Webb - is part of Early Release Science (ERS) program 1334, one of 13 ERS programs designed to help astronomers understand how to use Webb and make the most of its scientific capabilities.

We spoke with Matteo Correnti from the Italian Space Agency; Alessandro Savino from the University of California, Berkeley; Roger Cohen from Rutgers University; and Andy Dolphin from Raytheon Technologies to find out more about Webb's observations of M92 and how the team is using the data to help other astronomers. (Last November, Kristen McQuinn talked with us about her work on the dwarf galaxy WLM, which is also part of this program.)

Tell us about this ERS program. What are you trying to accomplish?
Alessandro Savino: This particular program is focused on resolved stellar populations. These are large groups of stars like M92 that are very nearby - close enough that Webb can single out the individual stars in the system. Scientifically, observations like these are very exciting because it is from our cosmic neighborhood that we learn a lot of the physics of stars and galaxies that we can translate to objects that we see much farther away.

Matteo Correnti: We're also trying to understand the telescope better. This project has been instrumental for improving the calibration (making sure all of the measurements are as accurate as possible), for improving the data for other astronomers and other similar projects.

Why did you decide to look at M92 in particular?
Savino: Globular clusters like M92 are very important for our understanding of stellar evolution. For decades they have been a primary benchmark for understanding how stars work, how stars evolve. M92 is a classic globular cluster. It's close by; we understand it relatively well; it's one of our references in studies of stellar evolution and stellar systems.

Correnti: Another reason M92 is important is because it is one of the oldest globular clusters in the Milky Way, if not the oldest one. We think M92 is between 12 and 13 billion years old. It contains some of the oldest stars that we can find, or at least that we can resolve and characterize well. We can use nearby clusters like this as tracers of the very ancient universe.

Roger Cohen: We also chose M92 because it is very dense: There are a lot of stars packed together very closely. (The center of the cluster is thousands of times denser than the region around the Sun.) Looking at M92 allows us to test how Webb performs in this particular regime, where we need to make measurements of stars that are very close together.

What are the characteristics of a globular cluster that make it useful for studying how stars evolve?
Andy Dolphin: One of the main things is that the bulk of the stars in M92 would have formed at roughly the same time and with roughly the same mix of elements, but with a wide range of masses. So we can get a really good survey of this particular population of stars.

Savino: Also, since the stars all belong to the same object (the same globular cluster, M92), we know they are all about the same distance away from us. That helps us a lot because we know that differences in brightness between the different stars must be intrinsic, instead of just related to how far away they are. It makes the comparison with models much, much easier.

This star cluster has already been studied with the Hubble Space Telescope and other telescopes. What can we see with Webb that we have not seen already?
Cohen: One of the important differences between Webb and Hubble is that Webb operates at longer wavelengths, where very cool, low-mass stars give off most of their light. Webb is well-designed to observe very cool stars. We were actually able to reach down to the lowest mass stars - stars less than 0.1 times the mass of the Sun. This is interesting because this is very close to the boundary where stars stop being stars. (Below this boundary are brown dwarfs, which are so low-mass that they're not able to ignite hydrogen in their cores.)

Correnti: Webb is also a lot faster. To see the very faint low-mass stars with Hubble, you need hundreds of hours of telescope time. With Webb, it takes just a few hours.

Cohen: These observations weren't actually designed to push very hard on the limits of the telescope. So it's very encouraging to see that we were still able to detect such small, faint stars without trying really, really hard.

What's so interesting about these low-mass stars?
Savino: First of all, they are the most numerous stars in the universe. Second, from a theoretical point of view, they are very interesting because they've always been very difficult to observe and characterize. Especially stars less than half the mass of the Sun, where our current understanding of stellar models is a little more uncertain.

Correnti: Studying the light these low-mass stars emit can also help us better constrain the age of the globular cluster. That helps us better understand when different parts of the Milky Way (like the halo, where M92 is located) formed. And that has implications for our understanding of cosmic history.

It looks like there's big gap in the middle of the image you captured. What is that and why is it there? Dolphin: This image was made using Webb's Near-Infrared Camera (NIRCam). NIRCam has two modules, with a "chip gap" between the two. The center of the cluster is extremely crowded, extremely bright. So that would have limited the usefulness of the data from that region. The position of these images overlaps nicely with Hubble data available already.

One of your main goals was to provide tools for other scientists. What are you particularly excited about?
Dolphin: One of the key resources we developed and have made available to the astronomical community is something called the DOLPHOT NIRCam module. This works with an existing piece of software used to automatically detect and measure the brightness of stars and other unresolved objects (things with a star-like appearance). This was developed for cameras on Hubble. Adding this module for NIRCam (as well as one for NIRISS, another of Webb's instruments) allows astronomers the same analysis procedure they know from Hubble, with the additional benefit of now being able to analyze Hubble and Webb data in a single pass to get combined-telescope star catalogs.

Savino: This is a really big community service component. It's helpful for everyone. It's making analysis much easier.

Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
NASA to launch Israel's first space telescope
Rehovot, Israel (SPX) Feb 22, 2023
NASA will launch Israel's first space telescope mission, the Ultraviolet Transient Astronomy Satellite (ULTRASAT). ULTRASAT, an ultraviolet observatory with a large field of view, will investigate the secrets of short-duration events in the universe, such as supernova explosions and mergers of neutron stars. Led by the Israel Space Agency and Weizmann Institute of Science, ULTRASAT is planned for launch into geostationary orbit around Earth in early 2026. In addition to providing the launch servic ... read more

STELLAR CHEMISTRY
Crew-6 ready for launch and a program of scientific studies on ISS

Tennessee company gets multibillion-dollar NASA contract for Kennedy Space Center operations

Russia's uncrewed Soyuz rescue spacecraft docks with ISS

SpaceX crew launch to ISS postponed

STELLAR CHEMISTRY
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

ULA's Vulcan Centaur rocket is flying for the first time in May

NASA, SpaceX delay Sunday Crew-6 flight until Monday

Galactic Energy to launch rockets from the sea

STELLAR CHEMISTRY
Drilling the Marker Band Again: Sols 3750-3751

Another Busy Day on Mars: Sol 3749

NASA's MAVEN spacecraft remains in safe mode after IMU issue

SuperCam's AI capabilities enhanced with AEGIS upgrade

STELLAR CHEMISTRY
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

STELLAR CHEMISTRY
Yusaku Maezawa, Entrepreneur and First Private Japanese Citizen to Visit the ISS, Invests U.S. $23 Million in Astroscale

Sidus Space secures additional launches with SpaceX

AFRL establishes one-stop shop for partnerships

Luxembourg taps into SES's O3b mPOWER for defense and disaster recovery

STELLAR CHEMISTRY
BeetleSat deploys satellite expandable antenna in LEO orbit

Astroscale Raises U.S. $76 Million, Continuing to Lead the Growing On-Orbit Servicing Sector

Revolutionary Space Debris Removal Mission Advances to Next Phase

Mitsubishi Electric and Astroscale to Develop and Produce Satellite Buses

STELLAR CHEMISTRY
CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

STELLAR CHEMISTRY
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.