. | . |
Webb Telescope to explore a neighboring, dusty planetary system by Claire Blome for Hubble News Baltimore MD (SPX) Jul 22, 2021
Researchers will use NASA's upcoming James Webb Space Telescope to study Beta Pictoris, an intriguing young planetary system that sports at least two planets, a jumble of smaller, rocky bodies, and a dusty disk. Their goals include gaining a better understanding of the structures and properties of the dust to better interpret what is happening in the system. Since it's only about 63 light-years away and chock full of dust, it appears bright in infrared light - and that means there is a lot of information for Webb to gather. Beta Pictoris is the target of several planned Webb observing programs, including one led by Chris Stark of NASA's Goddard Space Flight Center and two led by Christine Chen of the Space Telescope Science Institute in Baltimore, Maryland. Stark's program will directly image the system after blocking the light of the star to gather a slew of new details about its dust. Chen's programs will gather spectra, which spread light out like a rainbow to reveal which elements are present. All three observing programs will add critical details to what's known about this nearby system.
First, a Review of What We Know Like our own solar system, Beta Pictoris has a debris disk, which includes comets, asteroids, rocks of various sizes, and plenty of dust in all shapes that orbit the star. (A debris disk is far younger and can be more massive than our solar system's Kuiper Belt, which begins near Neptune's orbit and is where many short-period comets originate.) This outside ring of dust and debris is also where a lot of activity is happening. Pebbles and boulders could be colliding and breaking into far smaller pieces - sending out plenty of dust.
Scrutinizing This Planetary System Webb's imagery will allow the researchers to study how the small dust grains interact with planets that are present in that system. Plus, Webb will detail all the fine dust that streams off these objects, permitting the researchers to infer the presence of larger rocky bodies and what their distribution is in the system. They'll also carefully assess how the dust scatters light and reabsorbs and reemits light when it's warm, allowing them to constrain what the dust is made of. By cataloging the specifics of Beta Pictoris, the researchers will also assess how similar this system is to our solar system, helping us understand if the contents of our solar system are unique. Isabel Rebollido, a team member and postdoctoral researcher at STScI, is already building complex models of Beta Pictoris. The first model combines existing data about the system, including radio, near-infrared, far-infrared, and visible light from both space- and ground-based observatories. In time, she will add Webb's imagery to run a fuller analysis. The second model will feature only Webb's data - and will be the first they explore. "Is the light Webb will observe symmetrical?" Rebollido asked. "Or are there 'bumps' of light here and there because there is an accumulation of dust? Webb is far more sensitive than any other space telescope and gives us a chance to look for this evidence, as well as water vapor where we know there's gas."
Dust as a Decoder Ring "After planets, most of the mass in the Beta Pictoris system is thought to be in smaller planetesimals that we can't directly observe," Chen explained. "Fortunately, we can observe the dust left behind when planetesimals collide." This dust is where Chen's team will focus its research. What do the smallest dust grains look like? Are they compact or fluffy? What are they made of? "We'll analyze Webb's spectra to map the locations of dust and gas - and figure out what their detailed compositions are," Chen explained. "Dust grains are 'fingerprints' of planetesimals we can't see directly and can tell us about what these planetesimals are made of and how they formed." For example, are the planetesimals ice-rich like comets in our solar system? Are there signs of high-speed collisions between rocky planetesimals? Clearly analyzing if grains in one region are more solid or fluffy than another will help the researchers understand what is happening to the dust, and map out the subtle differences in the dust in each region. "I'm looking forward to analyzing Webb's data since it will provide exquisite detail," added Cicero X. Lu, a team member and a fourth-year Ph.D. student at Johns Hopkins University in Baltimore. "Webb will allow us to identify more elements and pinpoint their precise structures." In particular, there's a cloud of carbon monoxide at the edge of the disk that greatly interests these researchers. It's asymmetric and has an irregular, blobby side. One theory is that collisions released dust and gas from larger, icy bodies to form this cloud. Webb's spectra will help them build scenarios that explain its origin.
New radio receiver opens wider window to radio universe Tokyo, Japan (SPX) Jul 12, 2021 Researchers have used the latest wireless technology to develop a new radio receiver for astronomy. The receiver is capable of capturing radio waves at frequencies over a range several times wider than conventional ones, and can detect radio waves emitted by many types of molecules in space at once. This is expected to enable significant progresses in the study of the evolution of the Universe and the mechanisms of star and planet formation. Interstellar molecular clouds of gas and dust provide th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |