. 24/7 Space News .
STELLAR CHEMISTRY
Webb Telescope to explore a neighboring, dusty planetary system
by Claire Blome for Hubble News
Baltimore MD (SPX) Jul 22, 2021

A debris disk, which includes comets, asteroids, rocks of various sizes, and plenty of dust, orbits the star Beta Pictoris, which is blocked at the center of this 2012 image by a coronagraph aboard the Hubble Space Telescope. This is the visible-light view of the system. NASA's James Webb Space Telescope will view Beta Pictoris in infrared light, both using its coronagraphs and capturing data known as spectra to allow researchers to learn significantly more about the gas and dust in the debris disk, which includes lots of smaller bodies like exocomets.

Researchers will use NASA's upcoming James Webb Space Telescope to study Beta Pictoris, an intriguing young planetary system that sports at least two planets, a jumble of smaller, rocky bodies, and a dusty disk. Their goals include gaining a better understanding of the structures and properties of the dust to better interpret what is happening in the system. Since it's only about 63 light-years away and chock full of dust, it appears bright in infrared light - and that means there is a lot of information for Webb to gather.

Beta Pictoris is the target of several planned Webb observing programs, including one led by Chris Stark of NASA's Goddard Space Flight Center and two led by Christine Chen of the Space Telescope Science Institute in Baltimore, Maryland. Stark's program will directly image the system after blocking the light of the star to gather a slew of new details about its dust. Chen's programs will gather spectra, which spread light out like a rainbow to reveal which elements are present. All three observing programs will add critical details to what's known about this nearby system.

First, a Review of What We Know
Beta Pictoris has been regularly studied in radio, infrared, and visible light since the 1980s. The star itself is twice as massive as our Sun and quite a bit hotter, but also significantly younger. (The Sun is 4.6 billion years old, but Beta Pictoris is approximately 20 million years old.) At this stage, the star is stable and hosts at least two planets, which are both far more massive than Jupiter. But this planetary system is remarkable because it is where the first exocomets (comets in other systems) were discovered. There are quite a lot of bodies zipping around this system!

Like our own solar system, Beta Pictoris has a debris disk, which includes comets, asteroids, rocks of various sizes, and plenty of dust in all shapes that orbit the star. (A debris disk is far younger and can be more massive than our solar system's Kuiper Belt, which begins near Neptune's orbit and is where many short-period comets originate.)

This outside ring of dust and debris is also where a lot of activity is happening. Pebbles and boulders could be colliding and breaking into far smaller pieces - sending out plenty of dust.

Scrutinizing This Planetary System
Stark's team will use Webb's coronagraphs, which block the light of the star, to observe the faint portions of the debris disk that surround the entire system. "We know there are two massive planets around Beta Pictoris, and farther out there is a belt of small bodies that are colliding and fragmenting," Stark explained. "But what's in between? How similar is this system to our solar system? Can dust and water ice from the outer belt eventually make its way into the inner region of the system? Those are details we can help tease out with Webb."

Webb's imagery will allow the researchers to study how the small dust grains interact with planets that are present in that system. Plus, Webb will detail all the fine dust that streams off these objects, permitting the researchers to infer the presence of larger rocky bodies and what their distribution is in the system. They'll also carefully assess how the dust scatters light and reabsorbs and reemits light when it's warm, allowing them to constrain what the dust is made of. By cataloging the specifics of Beta Pictoris, the researchers will also assess how similar this system is to our solar system, helping us understand if the contents of our solar system are unique.

Isabel Rebollido, a team member and postdoctoral researcher at STScI, is already building complex models of Beta Pictoris. The first model combines existing data about the system, including radio, near-infrared, far-infrared, and visible light from both space- and ground-based observatories. In time, she will add Webb's imagery to run a fuller analysis.

The second model will feature only Webb's data - and will be the first they explore. "Is the light Webb will observe symmetrical?" Rebollido asked. "Or are there 'bumps' of light here and there because there is an accumulation of dust? Webb is far more sensitive than any other space telescope and gives us a chance to look for this evidence, as well as water vapor where we know there's gas."

Dust as a Decoder Ring
Think of the debris disk of Beta Pictoris as a very busy, elliptical highway - except one where there aren't many traffic rules. Collisions between comets and larger rocks can produce fine dust particles that subsequently scatter throughout the system.

"After planets, most of the mass in the Beta Pictoris system is thought to be in smaller planetesimals that we can't directly observe," Chen explained. "Fortunately, we can observe the dust left behind when planetesimals collide."

This dust is where Chen's team will focus its research. What do the smallest dust grains look like? Are they compact or fluffy? What are they made of?

"We'll analyze Webb's spectra to map the locations of dust and gas - and figure out what their detailed compositions are," Chen explained. "Dust grains are 'fingerprints' of planetesimals we can't see directly and can tell us about what these planetesimals are made of and how they formed." For example, are the planetesimals ice-rich like comets in our solar system? Are there signs of high-speed collisions between rocky planetesimals? Clearly analyzing if grains in one region are more solid or fluffy than another will help the researchers understand what is happening to the dust, and map out the subtle differences in the dust in each region.

"I'm looking forward to analyzing Webb's data since it will provide exquisite detail," added Cicero X. Lu, a team member and a fourth-year Ph.D. student at Johns Hopkins University in Baltimore. "Webb will allow us to identify more elements and pinpoint their precise structures."

In particular, there's a cloud of carbon monoxide at the edge of the disk that greatly interests these researchers. It's asymmetric and has an irregular, blobby side. One theory is that collisions released dust and gas from larger, icy bodies to form this cloud. Webb's spectra will help them build scenarios that explain its origin.


Related Links
Space Telescope Science Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New radio receiver opens wider window to radio universe
Tokyo, Japan (SPX) Jul 12, 2021
Researchers have used the latest wireless technology to develop a new radio receiver for astronomy. The receiver is capable of capturing radio waves at frequencies over a range several times wider than conventional ones, and can detect radio waves emitted by many types of molecules in space at once. This is expected to enable significant progresses in the study of the evolution of the Universe and the mechanisms of star and planet formation. Interstellar molecular clouds of gas and dust provide th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How can you become a space tourist?

Who's who on Blue Origin's first crewed flight

Blue Origin's first crewed flight minted four new astronauts

World's richest man Jeff Bezos blasts into space

STELLAR CHEMISTRY
Long March 2C rocket carrying four satellites launched

Thruster research to help propel spacecraft

NASA conducts 5th test in RS-25 series

Umbra awarded $950M IDIQ contract following Space-X launch

STELLAR CHEMISTRY
ExoMars orbiter continues hunt for key signs of life on Mars

Perseverance rover begins hunt for signs of Martian life

NASA Perseverance Mars Rover to acquire first sample

NASA rover preparing to take first Mars rock samples

STELLAR CHEMISTRY
China's five-star red flag flies proudly on red planet

China's Commercial Space Industry

Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

STELLAR CHEMISTRY
Funding partnerships launch the UK-Australia Space Bridge

Space, the final frontier for billionaire Richard Branson

Department of Space's commercial arm NewSpace India can also lease ISRO assets

OneWeb and BT to explore rural connectivity solutions for UK

STELLAR CHEMISTRY
Britain supports U.S. plan for deep space radar station

D-Orbit signs contract with the European Space Agency under the Boost! Project

New material could mean lightweight armor, protective coatings

Reprogrammable satellite fuelled prior to launch

STELLAR CHEMISTRY
First measurement of isotopes in atmosphere of exoplanet

From the sun to the stars: A journey of exoplanet discovery begins

Planetary shields will buckle under stellar winds from their dying stars

Brainless slime molds 'think' their way through the environment

STELLAR CHEMISTRY
Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

Ride with Juno as it flies past Jupiter and Ganymede

The mystery of what causes Jupiter's X-ray auroras is solved

Surface of Jupiter's moon Europa churned by small impacts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.