![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Bern, Switzerland (SPX) Jan 25, 2023
Frozen molecules were central to the origin of life on Earth. In addition to impacts of icy comets and asteroids, according to current theory, our planet likely also received the elementary components of life from the ices of the immense interstellar molecular cloud from which the Earth and the rest of the solar system emerged. In a new study, an international research team, with the participation of a researcher from the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS, has now discovered ice in deeper regions of such a molecular cloud than ever before. At the same time, with a temperature of about minus 263 degrees Celsius (or about ten degrees above absolute zero), it is the coldest ice ever measured. The results were published in the journal Nature Astronomy.
A wealth of ice varieties "In addition to simple ices such as water, carbon dioxide, carbon monoxide, ammonia, and methane we were able to identify several other compounds, including the more complex organic ice methanol." The measurements, made by the team with the JWST of NASA, ESA and the Canadian Space Agency (CSA), provide the research community with unprecedented insights into the abundance of icy compounds that can be found inside interstellar molecular clouds - and subsequently incorporated into stars and planets that emerge from them.
A necessary precision In this study, the team focused on the molecular cloud "Chameleon I", more than 500 light years away from Earth, in which dozens of young stars are currently forming. They are located near the centre, in a particularly cold, dense and therefore difficult to study region. "Only with the Webb's high-precision infrared spectrographs (NIRSpec and MIRI), which can precisely detect and resolve radiation at these wavelengths, were these measurements possible," says the astronomer.
Do planets contain the ingredients of life from the beginning? "These elements are important components of prebiotic molecules such as simple amino acids - and thus ingredients of life, so to speak," Drozdovskaya says. But the team found that the amount of these elements in the measured ices was less than the total budget of each element expected, based on the density of this cloud. This suggests that these elements are not found exclusively in the icy components of molecular clouds, but could also be lurking elsewhere. "The fact that we are 'missing' some of the CHONS budget could mean that CHONS are trapped in rocky dust particles, for example," explains Melissa McClure. "This could allow a greater diversity in the bulk composition of terrestrial planets." The team's identification of complex organic molecules, like methanol and potentially ethanol, also suggests that the many star and planet systems developing in this particular cloud will inherit molecules from the molecular cloud in a fairly advanced chemical state. "This could mean that the presence of prebiotic molecules in planetary systems is a common result of star formation, rather than a unique feature of our own Solar System", says McClure.
Research Report:An Ice Age JWST inventory of dense molecular cloud ices
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |