Subscribe free to our newsletters via your
. 24/7 Space News .




WEATHER REPORT
Giant waves of atmospheric energy driving extreme weather
by Staff Writers
Potsdam, Germany (SPX) Feb 26, 2013


File image.

The world has suffered from severe regional weather extremes in recent years, such as the heat wave in the United States in 2011 or the one in Russia 2010 coinciding with the unprecedented Pakistan flood. Behind these devastating individual events there is a common physical cause, propose scientists of the Potsdam Institute for Climate Impact Research (PIK).

The study will be published this week in the US Proceedings of the National Academy of Sciences and suggests that man-made climate change repeatedly disturbs the patterns of atmospheric flow around the globe's Northern hemisphere through a subtle resonance mechanism.

"An important part of the global air motion in the mid-latitudes of the Earth normally takes the form of waves wandering around the planet, oscillating between the tropical and the Arctic regions. So when they swing up, these waves suck warm air from the tropics to Europe, Russia, or the US, and when they swing down, they do the same thing with cold air from the Arctic," explains lead author Vladimir Petoukhov.

"What we found is that during several recent extreme weather events these planetary waves almost freeze in their tracks for weeks. So instead of bringing in cool air after having brought warm air in before, the heat just stays. In fact, we observe a strong amplification of the usually weak, slowly moving component of these waves," says Petoukhov.

Time is critical here: two or three days of 30 degrees Celsius are no problem, but twenty or more days lead to extreme heat stress. Since many ecosystems and cities are not adapted to this, prolonged hot periods can result in a high death toll, forest fires, and dramatic harvest losses.

Climate change caused by greenhouse-gas emissions from fossil-fuel burning does not mean uniform global warming - in the Arctic, the relative increase of temperatures, amplified by the loss of snow and ice, is higher than on average.

This in turn reduces the temperature difference between the Arctic and, for example, Europe, yet temperature differences are a main driver of air flow. Additionally, continents generally warm and cool more readily than the oceans. "These two factors are crucial for the mechanism we detected," says Petoukhov.

"They result in an unnatural pattern of the mid-latitude air flow, so that for extended periods the slow synoptic waves get trapped."

The authors of the study developed equations that describe the wave motions in the extra-tropical atmosphere and show under what conditions those waves can grind to a halt and get amplified. They tested their assumptions using standard daily weather data from the US National Centers for Environmental Prediction (NCEP).

During recent periods in which several major weather extremes occurred, the trapping and strong amplification of particular waves - like "wave seven" (which has seven troughs and crests spanning the globe) - was indeed observed. The data show an increase in the occurrence of these specific atmospheric patterns, which is statistically significant at the 90 percent confidence level.

"Our dynamical analysis helps to explain the increasing number of novel weather extremes. It complements previous research that already linked such phenomena to climate change, but did not yet identify a mechanism behind it," says Hans Joachim Schellnhuber, director of PIK and co-author of the study.

"This is quite a breakthrough, even though things are not at all simple - the suggested physical process increases the probability of weather extremes, but additional factors certainly play a role as well, including natural variability." Also, the 32-year period studied in the project provides a good indication of the mechanism involved, yet is too short for definite conclusions.

Nevertheless, the study significantly advances the understanding of the relation between weather extremes and man-made climate change. Scientists were surprised by how far outside past experience some of the recent extremes have been. The new data show that the emergence of extraordinary weather is not just a linear response to the mean warming trend, and the proposed mechanism could explain that.

Article: Petoukhov, V., Rahmstorf, S., Petri, S., Schellnhuber, H. J. (2013): Quasi-resonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences (Early Edition) [doi:10.1073/pnas.1222000110]

.


Related Links
Potsdam Institute for Climate Impact Research (PIK)
Weather News at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WEATHER REPORT
New study links extreme weather to climate change
Washington (AFP) Feb 25, 2013
Scientists said Monday they have identified a physical mechanism behind the extreme weather that has plagued many parts of the world in recent years - and that it is tied to climate change. Since 2010, for example, the United States and Russia have each suffered scorching heat waves, while Pakistan saw unprecedented flooding. Scientists from the Potsdam Institute for Climate Impact Res ... read more


WEATHER REPORT
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

WEATHER REPORT
Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

Big Nickel Rock Target Ahead

NASA Rover Confirms First Drilled Mars Rock Sample

WEATHER REPORT
Choreographed to Perfection

ATK Launch Abort Motor For First Orion Test Vehicle

Supersonic skydiver's records confirmed

Kennedy Engineers Designing Plant Habitat For ISS

WEATHER REPORT
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

WEATHER REPORT
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

WEATHER REPORT
SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

India's 102nd space mission lifts off successfully

Countdown begins for Indo-French satellite launch

WEATHER REPORT
NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

Earth-like planets are right next door

WEATHER REPORT
Tokyo hotel shrinks in new-style urban demolition

Fluids in Space, Shaken Not Stirred

The world's most sensitive plasmon resonance sensor inspired by ancient Roman cup

Sustainable new catalysts fueled by a single proton




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement