. | . |
Wealthy nations carving up space and its riches, leaving others behind by Theodora Ogden | Research Fellow - ASU Tempe AZ (The Conversation) May 16, 2022
Satellites help run the internet and television and are central to the Global Positioning System. They enable modern weather forecasting, help scientists track environmental degradation and play a huge role in modern military technology. Nations that don't have their own satellites providing these services rely on other countries. For those that want to develop their own satellite infrastructure, options are running out as space fills up. I am a research fellow at Arizona State University, studying the wider benefits of space and ways to make it more accessible to developing countries. Inequity is already playing out in access to satellites. In the not-so-distant future, the ability to extract resources from the Moon and asteroids could become a major point of difference between the space haves and have-nots. As policies emerge, there is the risk that these inequities become permanent.
Where to park a satellite CubeSats are small, cheap, customizable satellites that are simple enough to be built by high school students. Companies such as SpaceX can launch one of these satellites into orbit for relatively cheap - from $1,300 per pound. However, there are only so many places to "park" a satellite in orbit around Earth, and these are quickly filling up. The best parking is in geostationary orbit, around 22,250 miles (35,800 kilometers) above the equator. A satellite in geostationary orbit rotates at the same rate as Earth, remaining directly above a single location on Earth's surface - which can be very useful for telecommunications, broadcasting and weather satellites. There are only 1,800 geostationary orbital slots, and as of February 2022, 541 of them were occupied by active satellites. Countries and private companies have already claimed most of the unoccupied slots that offer access to major markets, and the satellites to fill them are currently being assembled or awaiting launch. If, for example, a new spacefaring nation wants to put a weather satellite over a specific spot in the Atlantic Ocean that is already claimed, they would either have to choose a less optimal location for the satellite or buy services from the country occupying the spot they wanted. Orbital slots are allocated by an agency of the United Nations called the International Telecommunication Union. Slots are free, but they go to countries on a first-come, first-served basis. When a satellite reaches the end of its 15- to 20-year lifespan, a country can simply replace it and renew its hold on the slot. This effectively allows countries to keep these positions indefinitely. Countries that already have the technology to utilize geostationary orbit have a major advantage over those that do not. While geostationary orbital slots are the most useful and limited, there are many other orbits around Earth. These, too, are filling up - adding to the growing problem of space debris. Low Earth orbit is around 1,000 miles (1,600 km) above the surface. Satellites in low Earth orbit are moving fast in a highly congested environment. While this may be a good place for Earth imaging satellites, it is not ideal for single communication satellites - like those used to broadcast television, radio and the internet. Low Earth orbit can be used for communications if multiple satellites work together to form a constellation. Companies like SpaceX and Blue Origin are working on projects to put thousands of satellites into low Earth orbit over the next few years to provide internet across the globe. The first generation of SpaceX's Starlink consists of 1,926 satellites, and the second generation will add another 30,000 to orbit. At the current rate, the major space players are rapidly occupying geostationary and low Earth orbits, potentially monopolizing access to important satellite capabilities and adding to space junk.
Access to resources in space Asteroids hold astounding amounts of valuable minerals and metals. Later this year, NASA is launching a probe to explore an asteroid named 16 Psyche, which scientists estimate contains over US$10 quintillion worth of iron. Tapping huge resource deposits like this and transporting them to Earth could provide massive boosts to the economies of spacefaring nations while disrupting the economies of countries that currently depend on exporting minerals and metals. Another highly valuable resource in space is helium-3, a rare version of helium that scientists think could be used in nuclear fusion reactions without producing radioactive waste. While there are considerable technological obstacles to overcome before helium-3 is a feasible energy source, if it works, there are enough deposits on the Moon and elsewhere in the solar system to satisfy Earth's energy requirements for several centuries. If powerful spacefaring countries develop the technology to use and mine helium-3 - and choose not to share the benefits with other nations - it could result in lasting inequities. Existing international space laws are not well suited to handle the complicated web of private companies and nations competing for resources in space. Countries are organizing into groups - or "space blocs" - that are uniting on goals and rules for future space missions. Two notable space blocs are planning missions to set up bases and potential mining operations on the Moon: the Artemis Accords, led by the U.S., as well as joint Chinese and Russian plans. Right now, the major players in space are establishing the norms for exploiting resources. There is a risk that instead of focusing on what is best for everyone on Earth, competition will drive these decisions, damaging the space environment and causing conflict. History shows that it is hard to challenge international norms once they are established.
Moving forward The 1967 Outer Space Treaty, the founding document of space law, says that space should be used "for the benefit and in the interests of all countries." The policies taking shape will dictate whether this is the case in the future.
Ariel Ekblaw on building beautiful architecture in space Boston MA (SPX) May 12, 2022 Living in space today is a cramped and utilitarian endeavor. Astronuats who arrive on the International Space Station (ISS) are prepared for a stay in tight quarters, surrounded by exposed wiring, bulky electronics, and floor-to-ceiling beige paneling. But what if in-orbit accomodations could be more spacious, livable, and even beautiful? That's a question driving TESSERAE, an ambitious space architecture project led by Ariel Ekblaw SM '17, PhD '20, the founder and director of the Space Exploratio ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |