. | . |
Water was a winner in capturing CO2 by Staff Writers Trondheim, Norway (SPX) Dec 09, 2019
Climate worries go hand in hand with CO2 emissions concerns. Emissions hit an all-time high last year. The CO2 level in the atmosphere may be higher than it's been in 3 million years. Carbon capture will most likely be necessary to reduce the level of CO2 in the atmosphere. To accomplish that, we need the technology and materials to do the job. Recently a promising and surprising new candidate has emerged. "The results are first and foremost important in terms of climate change," says Professor Liyuan Deng at the Norwegian University of Science and Technology's (NTNU) Department of Chemical Engineering. Professor Deng is leading the work of the membrane research group at NTNU, and their results are gaining attention. Power plants that use fossil fuels require a membrane that can filter the emissions and separate out the carbon. These membranes need to be both permeable for CO2 and also separate the CO2 from the other gases, such as nitrogen. "We didn't think this membrane material was going to be suitable," says Deng. But a simple move changed that. The hopeless membrane candidate needed another substance to work properly. This second substance was simply - water. By lowering the membrane into water and then drying it out again, the membrane underwent a change. CO2 penetrated the membrane much more efficiently, and the membrane was somewhat better at filtering out nitrogen. NPG Asia Materials, a journal in the Nature group, recently published an article on the NTNU research. The authors wrote that "these nanostructured membranes constitute promising candidates for gas separation technologies aimed at CO2 capture."
TESET A polymer is a substance composed of long-chain molecules. Many plastics are polymers, but they are also found in nature as proteins, cellulose and glass, for example. This particular polymer bears the name poly[tert-butylstyrene-b-(ethylene-alt-propylene)-b-(styrene-r-styrenesulfonate)-b-(ethylene-alt-propylene)-b-tert-butylstyrene]. Fortunately, someone gave it the nickname TESET instead. The material is already in commercial use and is therefore readily available. "The company holding the patent is interested in this new field of application," says Deng. The Membrane Research Laboratory at NTNU hosts the only group in Norway that is studying membranes from polymers that can be used to filter CO2 from the air. Some individual scientists are working with the same materials, while other groups are looking at inorganic membranes. The research on membranes in Norway as a whole is quite advanced, and perhaps even cutting edge, according to the professor. This particular research is part of Horizon 2020, the EU's Framework Programme for Research and Innovation. The group is also working on other promising candidates for CO2 filtration. Among these are membranes made of graphene oxide. Graphene is the world's thinnest and strongest material. It consists of one layer of carbon atoms organized in a hexagonal pattern. The material has many exciting properties, and several groups at NTNU are looking at the practical fields of application for it. All the published results and articles from the membrane research group associated with Horizon 2020 are freely accessible for the public, and the Trondheim laboratory is open to researchers from around the world to carry out experiments, as long as they receive permission and support from the EU ECCSEL project.
Research Report: "Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water"
Solving the thermoelectric 'trade-off' conundrum with metallic carbon nanotubes Tokyo, Japan (SPX) Dec 03, 2019 Scientists from Tokyo Metropolitan University have used aligned "metallic" carbon nanotubes to create a device which converts heat to electrical energy (a thermoelectric device) with a higher power output than pure semiconducting carbon nanotubes (CNTs) in random networks. The new device bypasses the troublesome trade-off in semiconductors between conductivity and electrical voltage, significantly outperforming its counterpart. High power thermoelectric devices may pave the way for more efficient ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |