. | . |
Water vapor sets some oxides aflutter by Staff Writers Upton NY (SPX) Oct 05, 2016
When one type of an oxide structure called perovskite is exposed to both water vapor and streams of electrons, it exhibits behavior that researchers had never anticipated: The material gives off oxygen and begins oscillating, almost resembling a living, breathing organism. The phenomenon was "totally unexpected" and may turn out to have some practical applications, says Yang Shao-Horn, the W.M. Keck Professor of Energy at MIT. She is the senior author of a paper describing the research that is being published in the journal Nature Materials. The paper's lead author is Binghong Han PhD '16, now a postdoc at Argonne National Laboratory. Perovskite oxides are promising candidates for a variety of applications, including solar cells, electrodes in rechargeable batteries, water-splitting devices to generate hydrogen and oxygen, fuel cells, and sensors. In many of these uses, the materials would be exposed to water vapor, so a better understanding of their behavior in such an environment is considered important for facilitating the development of many of their potential applications.
Like cooking polenta The behavior was so unexpected in part because the oxide is solid and was not expected to have the flexibility to form growing and shrinking bubbles. "This is incredible," Shao-Horn says. "We think of oxides as brittle," but in this case the bubbles expand and contract without any fracturing of the material. And in the process of bubble formation, "we are actually generating oxygen gas," she says. What's more, the exact frequency of the oscillations that are generated by the forming and bursting bubbles can be precisely tuned, which could be a useful feature for some potential applications. "The magnitude and frequency of the oscillations depend on the pressure" of the vapor in the system, Shao-Horn says. And since the phenomenon also depends on the presence of electron beams, the reaction can be switched on and off at will by controlling those beams. The effect is not just a surface reaction, she says. The water molecules, which become ionized (electrically charged) by the electron beam, actually penetrate deep into the perovskite. "These ions go inside the bulk material, so we see oscillations coming from very deep," she says. This experiment used the unique capabilities of an "environmental" transmission electron microscope at Brookhaven National Laboratory, part of a U.S. Department of Energy-supported facility there. With this instrument, the researchers directly observed the interaction between the perovskite material, water vapor, and streams of electrons, all at the atomic scale.
Keeping its shape Because this is such a new and intriguing finding, Shao-Horn says, "we still don't understand in full detail" exactly how the reactions take place, so the research is continuing in order to clarify the mechanisms. "It's an unexpected result that opens a lot of questions to address scientifically." While the initial experiments used electron beams, Shao-Horn questions if such behavior could also be induced by shining a bright light, which could be a useful approach for water splitting and purification - for example, using sunlight to generate hydrogen fuel from water or remove toxins from water. While most catalysts promote reactions only at their surfaces, the fact that this reaction penetrates into the bulk of the material suggests that it could offer a new mechanism for catalyst designs, she says.
Related Links Brookhaven National Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |