. | . |
Wasteful galaxies launch heavy elements into surrounding halos and deep space by Staff Writers Boulder CO (SPX) Jun 08, 2016
Galaxies "waste" large amounts of heavy elements generated by star formation by ejecting them up to a million light years away into their surrounding halos and deep space, according to a new study led by the University of Colorado Boulder. The research, which was recently published online in the Monthly Notices of the Royal Astronomical Society, shows that more oxygen, carbon and iron atoms exist in the sprawling, gaseous halos outside of galaxies than exist within the galaxies themselves, leaving the galaxies deprived of raw materials needed to build stars and planets. "Previously, we thought that these heavier elements would be recycled in to future generations of stars and contribute to building planetary systems," said Benjamin Oppenheimer, a research associate in the Center for Astrophysics and Space Astronomy (CASA) at CU-Boulder and lead author of the study. "As it turns out, galaxies aren't very good at recycling." The near-invisible reservoir of gas that surrounds a galaxy, known as the circumgalactic medium (CGM), is thought to play a central role in cycling elements in and out of the galaxy, but the exact mechanisms of this relationship remain elusive. A typical galaxy ranges in size from 30,000 to 100,000 light years while the CGM can span up to a million light years. The researchers used data from the Cosmic Origin Spectrograph (COS), a $70 million instrument designed at CU-Boulder and built by Boulder, Colorado-based Ball Aerospace Technology Corp., to study the composition of the CGM. COS is installed on NASA's Hubble Space Telescope and uses ultraviolet spectroscopy to study the evolution of the universe. Spiral galaxies like the Milky Way actively form stars and have a blueish color while elliptical galaxies have little star formation and appear red. Both types of galaxies contain tens to hundreds of billions of stars that create heavy elements. After running a series of simulations, the researchers found that the CGMs in both types of galaxies contained more than half of a galaxy's heavier elements, suggesting that galaxies are not as efficient at retaining their raw materials as previously thought. "The remarkable similarity of the galaxies in our simulations to those targeted by the COS team enables us to interpret the observations with greater confidence," said Robert Crain, a Royal Society University Research Fellow at Liverpool John Moores University and a co-author of the study. The new simulations also explain the puzzling COS observation that there appears to be less oxygen around elliptical than spiral galaxies. "The CGM of the elliptical galaxies is hotter," said Joop Schaye, a professor at Leiden University in the Netherlands and a co-author of the study. "The high temperatures, topping over one million degrees Kelvin, reduce the fraction of the oxygen that is five times ionized, which is the ion observed by COS." By contrast, the temperature of the CGM gas in spiral galaxies is 300,000 degrees Kelvin, or around fifty times hotter than the surface of the Sun. "It takes massive amounts of energy from exploding supernovae and supermassive black holes to launch all these heavy elements into the CGM," said Oppenheimer. "This is a violent and long-lasting process that can take over 10 billion years, which means that in a galaxy like the Milky Way, this highly ionized oxygen we're observing has been there since before the Sun was born." Co-authors of the manuscript "Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations" include Alireza Rahmati of the University of Zurich (Switzerland); Alexander Richings of Northwestern University; James Trayford, Richard Bower, Matthieu Schaller and Tom Theuns of Durham University (United Kingdom); and Jason Tumlinson of the Space Telescope Science Institute in Baltimore, Maryland.
Related Links University of Colorado at Boulder Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |