24/7 Space News
TECTONICS
Warm liquid spewing from Cascadia fault offer clues to earthquake hazards
This sonar image of the Pythias Oasis site shows bubbles rising from the seafloor about two-thirds of a mile deep and 50 miles off Newport, Oregon. These bubbles are a byproduct of a unique site where warm, chemically distinct fluid gushes from the seafloor. Researchers believe this fluid comes directly from the Cascadia megathrust zone, or plate boundary, and helps control stress buildup between the two plates.
Warm liquid spewing from Cascadia fault offer clues to earthquake hazards
by Staff Writers
Seattle WA (SPX) Apr 12, 2023

The field of plate tectonics is not that old, and scientists continue to learn the details of earthquake-producing geologic faults. The Cascadia Subduction Zone - the eerily quiet offshore fault that threatens to unleash a magnitude-9 earthquake in the Pacific Northwest - still holds many mysteries.

A study led by the University of Washington discovered seeps of warm, chemically distinct liquid shooting up from the seafloor about 50 miles off Newport, Oregon. The paper, published Jan. 25 in Science Advances, describes the unique underwater spring the researchers named Pythia's Oasis. Observations suggest the spring is sourced from water 2.5 miles beneath the seafloor at the plate boundary, regulating stress on the offshore fault.

The team made the discovery during a weather-related delay for a cruise aboard the RV Thomas G. Thompson. The ship's sonar showed unexpected plumes of bubbles about three-quarters of a mile beneath the ocean's surface. Further exploration using an underwater robot revealed the bubbles were just a minor component of warm, chemically distinct fluid gushing from the seafloor sediment.

"They explored in that direction and what they saw was not just methane bubbles, but water coming out of the seafloor like a firehose. That's something that I've never seen, and to my knowledge has not been observed before," said co-author Evan Solomon, a UW associate professor of oceanography who studies seafloor geology.

The feature was discovered by first author Brendan Philip, who did the work as a UW graduate student and now works as a White House policy advisor.

Observations from later cruises show the fluid leaving the seafloor is 9 degrees Celsius (16 degrees Fahrenheit) warmer than the surrounding seawater. Calculations suggest the fluid is coming straight from the Cascadia megathrust, where temperatures are an estimated 150 to 250 degrees Celsius (300 to 500 degrees Fahrenheit).

The new seeps aren't related to geologic activity at the nearby seafloor observatory that the cruise was heading toward, Solomon said. Instead, they occur near vertical faults that crosshatch the massive Cascadia Subduction Zone. These strike-slip faults, where sections of ocean crust and sediment slide past each other, exist because the ocean plate hits the continental plate at an angle, placing stress on the overlying continental plate.

Loss of fluid from the offshore megathrust interface through these strike-slip faults is important because it lowers the fluid pressure between the sediment particles and hence increases the friction between the oceanic and continental plates.

"The megathrust fault zone is like an air hockey table," Solomon said. "If the fluid pressure is high, it's like the air is turned on, meaning there's less friction and the two plates can slip. If the fluid pressure is lower, the two plates will lock - that's when stress can build up."

Fluid released from the fault zone is like leaking lubricant, Solomon said. That's bad news for earthquake hazards: Less lubricant means stress can build to create a damaging quake.

This is the first known site of its kind, Solomon said. Similar fluid seep sites may exist nearby, he added, though they are hard to detect from the ocean's surface. A significant fluid leak off central Oregon could explain why the northern portion of the Cascadia Subduction Zone, off the coast of Washington, is believed to be more strongly locked, or coupled, than the southern section off the coast of Oregon.

"Pythias Oasis provides a rare window into processes acting deep in the seafloor, and its chemistry suggests this fluid comes from near the plate boundary," said co-author Deborah Kelley, a UW professor of oceanography. "This suggests that the nearby faults regulate fluid pressure and megathrust slip behavior along the central Cascadia Subduction Zone."

Solomon just returned from an expedition to monitor sub-seafloor fluids off the northeast coast of New Zealand. The Hikurangi Subduction Zone is similar to the Cascadia Subduction Zone but generates more frequent, smaller earthquakes that make it easier to study. But it has a different sub-seafloor structure meaning it's unlikely to have fluid seeps like those discovered in the new study, Solomon said.

The research off Oregon was funded by the National Science Foundation. Other co-authors are Theresa Whorley, who did the work as a UW doctoral student and now works as an environmental consultant in Seattle; Emily Roland, a former UW faculty member now at Western Washington University; Masako Tominaga at Woods Hole Oceanographic Institution; and Anne Trehu and Robert Collier at Oregon State University.

Research Report:Fluid sources and overpressures within the central Cascadia Subduction Zone revealed by a warm, high-flux seafloor seep

Related Links
University of Washington
Tectonic Science and News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECTONICS
Was plate tectonics occurring when life first formed on Earth?
Rochester UK (SPX) Apr 10, 2023
Earth is a dynamic and constantly changing planet. From the formation of mountains and oceans to the eruption of volcanoes, the surface of our planet is in a constant state of flux. At the heart of these changes lies the powerful force of plate tectonics-the movements of Earth's crustal plates. This fundamental process has shaped the current topography of our planet and continues to play a role in its future. But what was plate tectonic activity like during early E ... read more

TECTONICS
Humans need Earth-like ecosystem for deep-space living

Orion stretches its wings ahead of first crewed Artemis mission

Practice makes perfect

NASA awards innovative concept studies for science, exploration

TECTONICS
China's 3D printed afterburning liquid rocket engine tested during recent mission

Musk's Twitter marks BBC, NPR as 'government funded' but not Tesla or SpaceX

Purdue offering new online Hypersonics Graduate Certificate

Rocket Lab moves CubeSat from Virginia to New Zealand

TECTONICS
Scoping out the next sampling stop for Perseverance

New interactive mosaic uses NASA imagery to show Mars in vivid detail

Ready for Software Upgrade Sols 3786-3788

MOXIE Celebrates 2 Years on Mars: Discoveries and Work Left To Do

TECTONICS
China's inland space launch site advances commercial services

China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

TECTONICS
Rocket Lab to launch NASA's cyclone-tracking satellite constellation from New Zealand

Safran to provide GNSS simulation solutions for Xona's LEO constellation

Deloitte announces formal space practice for rapidly growing space industry

Unseenlabs ready for Bro-9 satellite launch dedicated vessel geolocation from space

TECTONICS
NASA satellite's elusive green lasers spotted at work

Data can now be processed at the speed of light

UIUC researchers image magnetic behavior at the smallest scales to date

Google selects SpaceChain into its Startups Program

TECTONICS
Do Earth-like exoplanets have magnetic fields

New paper investigates exoplanet climates

JWST confirms giant planet atmospheres vary widely

Planet hunting and the origins of life

TECTONICS
Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

Spotlight on Ganymede, Juice's primary target

Search for alien life extends to Jupiter's icy moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.