Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
VT chemical engineers outline new approach to materials design
by Staff Writers
Blacksburg, VA (SPX) Sep 16, 2015


Hongliang Xin and members of his Virginia Tech chemical engineering research group, and fellow faculty member Luke Achenie developed a novel approach that should significantly accelerate materials discovery. Image courtesy Virginia Tech. For a larger version of this image please go here.

A novel approach that should "significantly accelerate materials discovery" is the subject of a new article in the Journal of Physical Chemistry Letters. The findings reveal a unique model that enables fast and accurate prediction of novel alloy materials for efficient chemical conversions.

Two Virginia Tech chemical engineering faculty members, Luke Achenie and Hongliang Xin, along with Xianfeng Ma and Zheng Li from Xin's research group, authored the article in the peer-reviewed journal.

"This is the first example of learning from data in catalysis. We anticipate that this new approach will have a huge impact in future materials design," Xin said.

Catalysis is the increase in the rate of a chemical reaction due to the addition of a substance called a catalyst. Catalysts come in multiple forms including: acids, solid metal, nanoparticles, and large protein molecules or enzymes in human bodies.

Ninety percent of industrially important chemicals are made using catalysts. It is a major field in applied science; hence the importance of the new approach by the Virginia Tech chemical engineering members.

The mixture of two or more metals with very precise atomic structures and compositions "has shown great promise for catalyzing many chemical and electrochemical reactions," Xin said.

In the past, testing of mixed blends of metals has produced novel physical and chemical properties. "However the process is very time-consuming and costly to search for highly optimized alloys" using the conventional approaches, Achenie added.

So that is why Achenie and Xin decided to use existing data to train computer algorithms to make predictions of new materials, a field called machine learning. This approach captures complex, nonlinear interactions of molecules on metal surfaces through artificial neural networks, thus allowing "large scale exploration alloy materials space," according to their article.

They specifically concentrated on the electrochemical reduction of carbon dioxide on metal electrodes "because of the current interest in this process for sustainable production of fuels and value added chemicals," Xin explained.

Carbon dioxide (CO2) is a versatile industrial material, used in everything from fire extinguishers to oil recovery to carbonated beverages, but it is also a major greenhouse gas. Conversion of CO2 to something useful could dramatically reduce its emission into the atmosphere and help alleviate the global warming problem.

With their model and their design approach, they have identified a few promising copper multi-metallics with a higher energy conversion efficiency and possibly higher selectivity in carbon dioxide electro-reduction to ethylene, an extremely useful chemical in industry for making plastics.

"This study opens a new way for designing metal-based catalysts with complexities, for example, geometry and composition, promoters and poisons, defects, and nano-effects," Xin said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Virginia Tech
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Indications of the origin of the Spin Seebeck effect discovered
Mainz, Germany (SPX) Sep 09, 2015
The recovery of waste heat in all kinds of processes poses one of the main challenges of our time to making established processes more energy-efficient and thus more environmentally friendly. The Spin Seebeck effect (SSE) is a novel, only rudimentarily understood effect, which allows for the conversion of a heat flux into electrical energy, even in electrically non-conducting materials. A team o ... read more


TECH SPACE
China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

Russia Eyes Moon for Hi-Tech Lunar Base

Russia Gets Ready for New Moon Landing

TECH SPACE
Opportunity Driving West To Reach New Rock Target

One small step for man as astronaut controls robot from space

ASU instruments help scientists probe ancient Mars atmosphere

What Happened to Early Mars' Atmosphere

TECH SPACE
New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

Opportunity found in lack of diversity in US tech sector

Boeing Revamps Production Facility for Starliner Flights

In Virginia, TechShop lets 'makers' tinker, innovate

TECH SPACE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

TECH SPACE
ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Russian ISS Crew's Next Spacewalk Planned for February 2016

Mogensen begins busy ISS tour

Soyuz rocket with three astronauts launches towards ISS

TECH SPACE
First Ever Launch Vehicle to Be Sent to Russia's New Spaceport in Siberia

US Navy to Launch Folding-Fin Ground Attack Rocket on Scientific Mission

US Launches Atlas V Rocket With Navy Communications Satellite After Delay

FCube facility enters operations with fueling of Soyuz Fregat upper stage

TECH SPACE
Earth observations show how nitrogen may be detected on exoplanets, aiding search for life

Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

TECH SPACE
Material scientists develop transparent glass 3-D printing technology

Billie Holiday to return to New York stage -- by hologram

Indications of the origin of the Spin Seebeck effect discovered

Digital Fusion Solutions to help U.S. Army with laser project




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.