. | . |
Violent flaring at the heart of a black hole system by Staff Writers Southampton UK (SPX) Oct 14, 2019
An international team of astronomers, led by the University of Southampton, have used state-of-the-art cameras to create a high-frame rate movie of a growing black hole system at a level of detail never seen before. In the process they uncovered new clues to understanding the immediate surroundings of these enigmatic objects. The scientists publish their work in a new paper in Monthly Notices of the Royal Astronomical Society. Black holes can feed off a nearby star and create vast accretion discs of material. Here, the effect of the black hole's strong gravity and the material's own magnetic field can cause rapidly changing levels of radiation to be emitted from the system as a whole. This radiation was detected in visible light by the HiPERCAM instrument on the Gran Telescopio Canarias (La Palma, Canary Islands) and in X-rays by NASA's NICER observatory aboard the International Space Station. The black hole system studied is named MAXI J1820+070, and was first discovered in early 2018. It is only about 10,000 light-years away, in our own Milky Way. It has the mass of about 7 Suns, collapsed down to a region of space smaller than the City of London. Investigating these systems is usually very difficult, as their distances make them too faint and too small to see - not even using the Event Horizon Telescope, which recently took a picture of the black hole at the centre of the galaxy M87. The HiPERCAM and NICER instruments however let the researchers record 'movies' of the changing light from the system at over 300 frames per second, capturing violent 'crackling' and 'flaring' of visible and X-ray light. John Paice, a graduate student at the University of Southampton and the Inter-University Centre for Astronomy and Astrophysics in India was the lead author of the study presenting these results, and also the artist who created the movie. He explained the work as follows: "The movie was made using real data, but slowed down to 1/10th of actual speed to allow the most rapid flares to be discerned by the human eye. We can see how the material around the black hole is so bright, it's outshining the star that it is consuming, and the fastest flickers last only a few milliseconds - that's the output of a hundred Suns and more being emitted in the blink of an eye!" Researchers also found that dips in X-ray levels are accompanied by a rise in visible light (and vice-versa). And the fastest flashes in visible light were found to emerge a fraction of a second after X-rays. Such patterns indirectly reveal the presence of distinct plasma, extremely hot material where electrons are stripped away from atoms, in structures deep in the embrace of the black hole's gravity, otherwise too small to resolve. This is not the first time this has been found; a split-second difference between X-ray and visual light has been seen in two other systems hosting black holes but it has never been observed at this level of detail. Members of this international team have been at the forefront of this field over the past decade. Dr. Poshak Gandhi, also of Southampton, found the same fleeting time signatures in the two previous systems as well. He commented on the significance of these findings: "The fact that we now see this in three systems strengthens the idea that it is a unifying characteristic of such growing black holes. If true, this must be telling us something fundamental about how plasma flows around black holes operate. "Our best ideas invoke a deep connection between inspiraling and outflowing bits of the plasma. But these are extreme physical conditions that we cannot replicate in Earth laboratories, and we don't understand how nature manages this. Such data will be crucial for homing in on the correct theory." John concluded with thoughts on the outlook for such work: "Time-domain astrophysics is a research area rife with the potential of discovery, as this study demonstrates. New systems like MAXI J1820+070 are discovered every year. Novel cameras like HiPERCAM and NICER are helping us to better understand these enigmatic cosmic objects better than ever before."
Research Report: "A Black Hole X-ray Binary at ~100 Hz: Multiwavelength Timing of MAXI J1820+070 with HiPERCAM and NICER"
TESS spots its first star-shredding black hole Greenbelt MD (SPX) Sep 27, 2019 For the first time, NASA's planet-hunting Transiting Exoplanet Survey Satellite (TESS) watched a black hole tear apart a star in a cataclysmic phenomenon called a tidal disruption event. Follow-up observations by NASA's Neil Gehrels Swift Observatory and other facilities have produced the most detailed look yet at the early moments of one of these star-destroying occurrences. "TESS data let us see exactly when this destructive event, named ASASSN-19bt, started to get brighter, which we've never be ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |