. | . |
Utilizing relativistic effects for laser fusion by Staff Writers Osaka, Japan (SPX) Jan 08, 2020
A team of researchers at Osaka University has investigated a new method for generating nuclear fusion power, showing that the relativistic effect of ultra-intense laser light improves upon current "fast ignition" methods in laser-fusion research to heat the fuel long enough to generate electrical power. These findings could provide a spark for laser fusion, ushering in a new era of carbonless energy production. Current nuclear power uses the fission of heavy isotopes, such as uranium, into lighter elements to produce power. Yet, this fission power has major concerns, such as spent fuel disposal and the risk of meltdowns. A promising alternative to fission is nuclear fusion. Like all stars, our sun is powered by the fusion of light isotopes, notably hydrogen, into heavier elements. Fusion has many advantages over fission, including the lack of hazardous waste or risk of uncontrolled nuclear reactions. However, getting more energy out of a fusion reaction than was put into it has remained an elusive goal. This is because hydrogen nuclei strongly repel each other, and fusion requires extreme heat and pressure conditions - like those found in the interior of the sun, for instance - to squeeze them together. One method, called "inertial confinement" uses extremely high-energy laser pulses to heat and compress a fuel pellet before it gets the chance to be blown apart. Unfortunately, this technique requires extremely precise control of the laser's energy so that the compression shock waves all arrive at the center simultaneously. Now, a team led by Osaka University has developed a modified method for inertial confinement that can be performed more consistently using a second laser shot. In "super-penetration" fast ignition, the directly irradiated second laser produces fast-moving electrons in dense plasma that heat the core during compression to trigger fusion. "By utilizing the relativistic behavior of the high-intensity laser, the energy can be reliably delivered to fuel in the imploded plasma aiming the ignition," first author Tao Gong says. The fuel for this method, which is usually a mix of the hydrogen isotopes deuterium and tritium, is easier to obtain than uranium, and becomes harmless helium after fusion. "This result is an important step towards the realization of laser fusion energy, as well as for other applications of high-energy density physics, including medical treatment," explains senior author Kazuo Tanaka.
Research Report: "Direct observation of imploded core heating via fast electrons with super-penetration scheme"
Powder, not gas: A safer, more effective way to create a star on Earth Plainsboro NJ (SPX) Dec 30, 2019 A major issue with operating ring-shaped fusion facilities known as tokamaks is keeping the plasma that fuels fusion reactions free of impurities that could reduce the efficiency of the reactions. Now, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found that sprinkling a type of powder into the plasma could aid in harnessing the ultra-hot gas within a tokamak facility to produce heat to create electricity without producing greenhouse gases or l ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |