. | . |
Using optical fiber to generate a two-micron laser by Staff Writers Lausanne, Switzerland (SPX) Oct 13, 2015
In recent years, two-micron lasers (0.002 millimetre) have been of growing interest among researchers. In the areas of surgery and molecule detection, for example, they offer significant advantages compared to traditional, shorter-wavelength lasers. However, two-micron lasers are still in their infancy and not yet as mature as their telecom counterparts (1.55-micron). Moreover sources currently used in labs are typically bulky and expensive. Optical fibre-based 2 micron lasers are an elegant solution to these issues. This is where researchers at Photonics Systems Laboratory (PHOSL) come in. In an article published in Light: Science and Applications, the team of Camille Bres at EPFL described a way to design these lasers at a lower cost, by changing the way optical fibres are connected to each other. Thanks to the new configuration, they were able not only to produce very good 2 micron lasers, but also to do without an expensive and complex component that is normally required.
Bloodless surgery and long-range molecule detection Two-micron lasers are also very useful for detecting key meteorological data over long distances through the air. Not to mention that they are highly effective in the processing of various industrial materials. To create a 2 micron fibre-laser, light is usually injected into an optical-fibre ring containing a gain region which amplifies 2 micron light. The light circulates in the ring, passing through the gain region many times thus gaining more and more power, until becoming a laser. For optimal operation, these systems include a costly component called isolator, which forces the light to circulate in a single direction. At PHOSL, researchers built a thulium-doped fibre laser that works without an isolator. Their idea was to connect the fibres differently, to steer light instead of stopping it. "We plug a kind of deviation that redirects the light heading in the wrong direction, putting it back on track", said Camille Bres. This means no more need for the isolator, whose job is to stop light moving in the wrong direction, sort of like a traffic cop. "We replaced the traffic cop with a detour," said Svyatoslav Kharitonov, the article's lead author. The new system not only proved to be less expensive than more traditional ones, it also showed it could generate a higher quality laser light. The explanation is as follows: the laser output gets purified because light interacts with itself in a very special way, thanks to the amplifying fibre's composition and dimensions, and the high power circulating in this atypical laser architecture. "While the association of amplifying fibres and high power usually weakens traditional lasers performance, it actually improves the quality of this laser, thanks to our specific architecture", said Svyatoslav Kharitonov. Publication: Light: Science and Applications, Isolator-free unidirectional thulium doped fibre laser
Related Links Ecole Polytechnique Federale de Lausanne Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |