. 24/7 Space News .
STELLAR CHEMISTRY
Unravelling the mystery of brown dwarfs
by Staff Writers
Geneva, Switzerland (SPX) Aug 27, 2021

stock image only

Brown dwarfs are astronomical objects with masses between those of planets and stars. The question of where exactly the limits of their mass lie remains a matter of debate, especially since their constitution is very similar to that of low-mass stars. So how do we know whether we are dealing with a brown dwarf or a very low mass star?

An international team, led by scientists from the University of Geneva (UNIGE) and the Swiss National Centre of Competence in Research (NCCR) PlanetS, in collaboration with the University of Bern, has identified five objects that have masses near the border separating stars and brown dwarfs that could help scientists understand the nature of these mysterious objects. The results can be found in the journal Astronomy and Astrophysics.

Like Jupiter and other giant gas planets, stars are mainly made of hydrogen and helium. But unlike gas planets, stars are so massive and their gravitational force so powerful that hydrogen atoms fuse to produce helium, releasing huge amounts of energy and light.

'Failed stars'
Brown dwarfs, on the other hand, are not massive enough to fuse hydrogen and therefore cannot produce the enormous amount of light and heat of stars. Instead, they fuse relatively small stores of a heavier atomic version of hydrogen: deuterium. This process is less efficient and the light from brown dwarfs is much weaker than that from stars. This is why scientists often refer to them as 'failed stars'.

"However, we still do not know exactly where the mass limits of brown dwarfs lie, limits that allow them to be distinguished from low-mass stars that can burn hydrogen for many billions of years, whereas a brown dwarf will have a short burning stage and then a colder life", points out Nolan Grieves, a researcher in the Department of Astronomy at the UNIGE's Faculty of Science, a member of the NCCR PlanetS and the study's first author.

"These limits vary depending on the chemical composition of the brown dwarf, for example, or the way it formed, as well as its initial radius", he explains.

To get a better idea of what these mysterious objects are, we need to study examples in detail. But it turns out that they are rather rare. "So far, we have only accurately characterised about 30 brown dwarfs", says the Geneva-based researcher. Compared to the hundreds of planets that astronomers know in detail, this is very few. All the more so if one considers that their larger size makes brown dwarfs easier to detect than planets.

New pieces to the puzzle
Today, the international team characterized five companions that were originally identified with the Transiting Exoplanet Survey Satellite (TESS) as TESS objects of interest (TOI) - TOI-148, TOI-587, TOI-681, TOI-746 and TOI-1213. These are called 'companions' because they orbit their respective host stars. They do so with periods of 5 to 27 days, have radii between 0.81 and 1.66 times that of Jupiter and are between 77 and 98 times more massive. This places them on the borderline between brown dwarfs and stars.

These five new objects therefore contain valuable information. "Each new discovery reveals additional clues about the nature of brown dwarfs and gives us a better understanding of how they form and why they are so rare", says Monika Lendl, a researcher in the Department of Astronomy at the UNIGE and a member of the NCCR PlanetS.

One of the clues the scientists found to show these objects are brown dwarfs is the relationship between their size and age, as explained by Francois Bouchy, professor at UNIGE and member of the NCCR PlanetS: "Brown dwarfs are supposed to shrink over time as they burn up their deuterium reserves and cool down. Here we found that the two oldest objects, TOI 148 and 746, have a smaller radius, while the two younger companions have larger radii."

Yet these objects are so close to the limit that they could just as easily be very low-mass stars, and astronomers are still unsure whether they are brown dwarfs. "Even with these additional objects, we still lack the numbers to draw definitive conclusions about the differences between brown dwarfs and low-mass stars. Further studies are needed to find out more", concludes Grieves.

Research paper


Related Links
University of Geneva
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
How disorderly young galaxies grow up and mature
Lund, Sweden (SPX) Aug 27, 2021
Using a supercomputer simulation, a research team at Lund University in Sweden has succeeded in following the development of a galaxy over a span of 13.8 billion years. The study shows how, due to interstellar frontal collisions, young and chaotic galaxies over time mature into spiral galaxies such as the Milky Way. Soon after the Big Bang 13.8 billion years ago, the Universe was an unruly place. Galaxies constantly collided. Stars formed at an enormous rate inside gigantic gas clouds. However, af ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space pens, pencils, and how NASA takes notes in space

Making space-based research more affordable-with a little help from the Girl Scouts

Mystery investor orders life support system for private space station

Collins Aerospace to provide an Earth-like atmosphere for future travelers heading into orbit

STELLAR CHEMISTRY
Fire ravages Esrange Space Centre in northern Sweden

NASA Technologies slated for testing on Blue Origin's New Shepard

AFRL extends capability for testing solid rocket motors with new equipment

Blue Origin launches experiments, artwork from Texas

STELLAR CHEMISTRY
NASA's Perseverance plans next sample attempt

Mars helicopter sees potential rover road ahead

Mars mission to pause for about 50 days

China's rover travels over 1 km on Mars

STELLAR CHEMISTRY
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

STELLAR CHEMISTRY
Space science project funding available for UK space projects

Maxar awarded contract to build SXM-10 satellite for SiriusXM

OneWeb confirms another successful launch, accelerating business momentum

Russia's Soyuz Spacecraft Launches 34 New OneWeb Satellites Into Orbit

STELLAR CHEMISTRY
Crews at Russian Cosmodrome assemble spacecraft with VR Glasses

Astroscale's ELSA-d demonstrates repeated magnetic capture

SwRI tests liquid acquisition device aboard Blue Origin's New Shepard rocket

World's first space junk cleaner satellite successfully picks up orbital debris

STELLAR CHEMISTRY
New class of habitable exoplanets are 'a big step forward' in the search for life

Cold planets exist throughout our Galaxy, even in the Galactic bulge

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

STELLAR CHEMISTRY
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.