. 24/7 Space News .
EARLY EARTH
Unraveling the mysteries of 2 ancient parasites
by Staff Writers
Cincinnati OH (SPX) Nov 04, 2015


These are crinoids that had pitting and swelling as the result of an ancient worm-like parasite. Image courtesy Carlton Brett. For a larger version of this image please go here.

Finding parasites on fossils is a rarity, since, as we humans have experienced with a shudder, they tend to attach to skin or soft tissue and not skeleton. However, a discovery led by the University of Cincinnati not only has uncovered the ancient remnants of two parasites on marine animals, but also revealed how the parasites and hosts evolved over hundreds of years.

Carlton Brett, a University of Cincinnati University Distinguished Professor of geology, is among the UC researchers and more than 7,000 geoscientists from around the world to present discoveries at the Geological Society of America's Annual Meeting, which takes place Nov. 1-4, in Baltimore, Md.

Both of the discoveries involved parasitic interactions with crinoids, a marine animal including the modern sea lilies. They're stemmed ancient echinoderms, hard-coated marine animals that are also grouped with starfish, sea urchins and sand dollars. These crinoids existed on ancient sea bottoms hundreds of millions of years ago - including in the Greater Cincinnati region.

Parasitic Snails with Spines
The first example involved gastropods or snails, which attached to the crinoids. The snails acted as the parasite, positioning themselves over the waste chute of the crinoids. The crinoids' waste was the snails' free meal. So at first, neither animal was harmed in this so-called symbiotic relationship during the Silurian Period.

Previous research found that over time, the snails apparently became more aggressive and harmful parasites, using their tongue as a drill to feed directly out of the gut of the crinoids, as discovered by Tomasz Baumiller, a professor of earth and environmental sciences at the University of Michigan, and UC alumnus Forest Gahn, a professor of geology at Brigham Young University-Idaho.

The UC research turned up yet another twist. As these creatures evolved during the Devonian Period - about 360-to-420 million years ago, there's an increased frequency of snails on certain crinoids, and furthermore, the crinoids affected by the snails started developing a spiny appearance, as did the snails. Brett noted that only certain crinoids - about 10 species - were hosts for the snails, and that a majority of them showed large spines. Yet, of over 40 non-host species, none had well-developed spines, suggesting that only the crinoids that attracted snails developed spines.

"We connected the spine growth to the rise of fish predators in the Devonian Period," says Brett.

"During the Devonian Period, there was a revolution of swimming predators, such as sharks, that could swim above the bottom of the sea and go after hard-shelled prey. Although the crinoids may not have been very delectable, based on living forms, the gastropods may well have been delicious 'escargot' to these larger predators. In this sense, the crinoids that hosted the snails were 'targeted' by the predators, which was detrimental to both the crinoids and their attached snails."

Brett suggests that because both species were adapting to fending off larger predators, they both developed their spiny appearance in an effort to avoid becoming a meal.

Longest-Known Parasitic Interaction
Brett says the second discovery involves the longest known parasitic-host relationship, in which the parasite is no longer believed to exist. Its activity is traced from the mid-Ordovician to the mid-Jurassic periods - a span of about 300 million years. Some species of crinoids have nearly 50 percent of populations afflicted by this parasite.

These parasites, believed to be worm-like, also affected certain crinoids by drilling out major parts of the skeleton, causing pitting and swelling. "Certain species of crinoids have as much as 40 percent of their skeleton removed by parasitic holes riddled out of them," says Brett.

"One of our interesting discoveries is that the crinoids that were affected by the snails noted above were never crinoids that have the holes and pits in them, and vice versa," continues Brett. "I'm suggesting that, in another twist, there might be a relationship in which the gastropods actually aided crinoids in keeping these worm-like parasites off their hosts, but this will require more study."

Brett says the discoveries document two of the most long-lasting parasitic relationships known to scientists - involving animals living together in unbroken chains for 200 million to more than 300 million years. "The parasites never really were so harmful that they killed the hosts, but persisted in 'ecological standoffs,' even through major biological crises. Eventually, however, both groups became extinct," says Brett.

Brett says he's interested in exploring future research on populations of crinoids to see how they were affected over time by the parasites, for example, if they may have been stunted.

Other researchers on the project are Mark Wilson, the Lewis M. and Marian Senter Nixon Professor of Natural Sciences and Geology at the College of Wooster; and James Thomka, who recently earned his doctoral degree from UC and is now a college lecturer in geology at the University of Akron.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cincinnati
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Preshistoric plumage patterns
Edmonton, Canada (SPX) Oct 30, 2015
An undergraduate University of Alberta paleontology student has discovered an Ornithomimus dinosaur with preserved tail feathers and soft tissue. The discovery is shedding light on the convergent evolution of these dinosaurs with ostriches and emus relating to thermoregulation and is also tightening the linkages between dinosaurs and modern birds. "We now know what the plumage looked like ... read more


EARLY EARTH
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

EARLY EARTH
Signs of Acid Fog Found on Mars

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

EARLY EARTH
NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

Got the right stuff? NASA is hiring astronauts

Studying Unidentified Aerial Phenomena Scientifically with UFODATA

Faster optimization

EARLY EARTH
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

EARLY EARTH
Space Station offers valuable lessons about life support systems

Space station marks 15 years inhabited by astronauts

Space Station Investigation Goes With the Flow

NASA astronauts get workout in marathon spacewalk

EARLY EARTH
Russian Space Agency signs contracts for 31 commercial launches in 2015

Russia to refurbish satan missiles as cheaper launchers

Full-Scale Drills at Russia's Vostochny Cosmodrome to Start in Two Weeks

Developing Commercial Spaceports in the USA

EARLY EARTH
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

EARLY EARTH
NUS scientists developed super sensitive magnetic sensor

Chipping away at the secrets of ice formation

Robotic Eyes to Assist Satellite Repairs in Orbit

Space Junk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.