. | . |
Unravel the mystery of the quasar's "anisotropic" effects on surrounding gas by Staff Writers Matsumoto, Japan (SPX) Jul 26, 2022
The team* led by Prof. Toru Misawa of the School of General Education, Shinshu University found for the first time that the internal donut-shaped structure of the central nuclei of bright galaxies in the distant universe can have an "anisotropic" effect on the gas distributed over a vast area around them. Because luminous nuclei of distant galaxies (quasars) emit strong ultraviolet radiation, they ionize** hydrogen gas (intergalactic gas***) around them. If the quasar's UV radiation is isotropic, the "ionization level" of intergalactic gas should be almost constant regardless of the direction seen from the quasars. However, previous studies have reported that the ionization level is biased depending on the direction. Therefore, the team investigated the origin of the anisotropic ionization level by targeting unique objects called "BAL quasars" whose direction of ultraviolet radiation can be estimated to some extent. Specifically, the team measured the ionization level of intergalactic gas in the transverse direction of a foreground BAL quasar, by observing another quasar in the background (Fig. 1). As a result of new observations with the Subaru Telescope**** in addition to the existing data, the team have found that the donut-shaped shielding structure (dust torus) of quasars is likely to cause the anisotropy of the ionization level. The dust torus is the indispensable structure of the standard quasar model. Thus, the above results observationally support the existence of a dust torus and suggest that its effects may extend to distant intergalactic gas. They are also important for exploring the history of ionization of the entire universe and studying the internal structure of quasars. The results of this research were published in the academic journal "The Astrophysical Journal" (IF: 5.521) of the American Astronomical Society.
Research Report:Exploratory Study of the Transverse Proximity Effect around BAL Quasars
Black Hole Hunters - A citizen science search for black hole self-lensing London, UK (SPX) Jul 12, 2022 A research team from the Open University and the University of Southampton is asking for the public's help to find some of the most mysterious, elusive objects in the Universe - black holes. By examining data from the SuperWASP survey, the UK's leading extra-solar planet detection programme, the team hope to detect changes in starlight that may provide evidence for the existence of these black holes. The most massive stars explode when they get old, and what is left of the star after the explosion ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |