. | . |
Unlocking the secrets of creeping concrete by Staff Writers Washington DC (SPX) Aug 04, 2016
College students have used it to make cheap furniture, China has had shortages of it, and main character Michael Scott of "The Office" once famously buried his face in it. Concrete is everywhere - a ubiquity owed to its strength as a building material. Despite its strength, however, it has a pernicious but inescapable tendency to "creep," or deform progressively under mechanical stress, which leads to crumbling bridges and cracked roads. Much like Radiohead's hit song Creep was in 1993 for anyone with an FM radio, the phenomenon of creep is inescapable, at least for material solids. Despite the obvious relevance this holds for the safety of infrastructure, however, the physical origin of the mechanism has remained poorly understood, and even scientifically contested. "As a result, engineers estimate creep using empirical models, which often poorly predict creep behavior," explained Gaurav Sant, an associate professor and Henry Samueli Fellow in the Department of Civil and Environmental Engineering at UCLA. "By careful unifications of experimental and computational data, we clarified that creep originates from a dissolution-precipitation process that acts at nanoscale contact regions of C-S-H grains." Sant and his colleagues - which includes Mathieu Bauchy, an assistant professor at UCLA - describe their work this week in The Journal of Chemical Physics, from AIP Publishing. The researchers found that calcium-silicate-hydrates, the binding phase that holds cement paste together, tend to dissolve at high-stress regions, and re-precipitate at low-stress regions. This is in correspondence with Le Chatelier's principle, also known as "the equilibrium law." "As a result of such dissolution-precipitation behavior, a macroscopic, time-dependent 'creep' deformation manifests," said Sant. The idea of a dissolution-precipitation process is familiar to geologists - its effects lead to deformation in the earth's crust. This the first time it's been shown to be relevant to concrete, explained Sant. The researchers' previous work includes developing vertical scanning interferometry methods to measure the dissolution rates of minerals on the nanometer scale, systematically assessing the viscoelastic behavior of calcium-silicate-hydrates, and developing methods to simulate long-term relaxation of disordered solids under stress. Taken together and applied to calcium-silicate-hydrate compositions, these contributions have given the researchers the ability to comprehensively examine and isolate the variables at play in concrete creep. The researchers' analysis also uses molecular dynamics simulations to assess how the geometric arrangement of atomic networks influences the volume relaxation of calcium-silicate-hydrate compositions. "Such behavior shows a dependence on the chemical composition of the calcium-silicate-hydrate, a result which permits identification of 'isostatic' calcium-silicate-hydrate compositions, which feature a minimum in creep and dissolution rates. This data reveals a previously unknown 'compositional route' to minimize creep of concrete," said Bauchy. Future work for Sant, Bauchy and their colleagues will involve putting together a comprehensive description of concrete creep from the atomic to macroscopic scale. This will ultimately help them develop mechanistic models for predicting creep behavior, and identification of cementation agents with reduced sensitivity to creep. Research paper: "A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments"
Related Links American Institute of Physics Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |