. 24/7 Space News .
TECH SPACE
Unique Weyl semimetal delivers largest intrinsic conversion of light to electricity
by Staff Writers
Chestnut Hill MA (SPX) Mar 06, 2019

The Weyl semimetal Tantalum Arsenide has a colossal bulk photovoltaic effect - an intrinsic, or non-linear, generation of current from light more than ten times larger than ever previously achieved, according to researchers from Boston College, the University of California Los Angeles, and Ecole Polytechnique Federale de Lausanne.

A recently discovered Weyl semimetal delivers the largest intrinsic conversion of light to electricity of any material, an international team lead by a group of Boston College researchers reports in the journal Nature Materials.

The discovery is based on a unique aspect of the material where electrons can be separated by their chirality, or handedness - similar to DNA. The findings may offer a new route to efficient generation of electricity from light, as well as for thermal or chemical sensing.

"We discovered that the Weyl semimetal Tantalum Arsenide, has a colossal bulk photovoltaic effect - an intrinsic, or non-linear, generation of current from light more than ten times larger than ever previously achieved," said Boston College Associate Professor of Physics Kenneth Burch, a lead author of the article, titled "Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal."

"Furthermore this is in the mid-infrared regime, which means this material can also be used for chemical or thermal sensing, as well as waste heat recovery," Burch added.

Typically, light is converted to electricity by creating a built-in electric field in a semiconductor, Burch said. "This is achieved through chemical modulation, and results in a fundamental upper limit to the potential efficiency - known as the Shockley-Queisser limit."

The alternative approach taken by the team explored exploiting the handedness of the electrons in the material to intrinsically generate direct current through the nonlinear mixing of the waves of light, Burch said.

This approach has typically been too small to be useful. But researchers recently realized it is closely connected to the topological properties of the electrons. That prompted predictions that the unique, DNA-like behavior of electrons in Weyl semimetals could produce enormous nonlinear effects.

"We focused on answering whether Weyl semimetals live up to the predictions of large, intrinsic nonlinear responses to generate current," said Burch, co-author of the paper with Philip Moll of Ecole Polytechnique Federale de Lausanne, and Ni Ni of UCLA.

He added that the team was surprised at the magnitude of the electronic effect, which was provoked by a new fabrication approach.

"The size of the effect was far larger than we dreamed," said Burch. "A previous group from MIT found their response was dominated by thermal, or extrinsic, terms, our use of the focused ion beam fabricated devices and symmetry allowed us to uncover the colossal bulk photovoltaic effect at room temperature."

Burch said the team is working to determine the "sweet spot" for the effect, specifically what is the ideal device configuration and wavelength of light.

Research paper


Related Links
Boston College
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Good news for future tech: Exotic 'topological' materials are surprisingly common
Princeton NJ (SPX) Mar 04, 2019
In a major step forward for an area of research that earned the 2016 Nobel Prize in Physics, an international team has found that substances with exotic electronic behaviors called topological materials are in fact quite common, and include everyday elements such as arsenic and gold. The team created an online catalog to make it easy to design new topological materials using elements from the periodic table. These materials have unexpected and strange properties that have shifted scientists' under ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA, Roscosmos reach consensus on Dragon unmanned flight to ISS

First Emirati set to head to space in September: UAE

Company's 10th cargo supply mission featured expanded commercial capabilities for Cygnus spacecraft

Virgin Galactic takes crew of three to altitude of 55 miles

TECH SPACE
Countdown as SpaceX, NASA prepare to test new astronaut capsule

McDermott awarded EPC Contract for largest hydrogen cryogenic sphere ever built for NASA

SpaceX to launch test for resumption of manned US flights

Global Space Propulsion System Market forecast to exceed $10 billion by 2023

TECH SPACE
Signs of ancient flowing water on Mars

NASA engineers are investigating Curiosity probe's computer reset

InSight is the Newest Mars weather service

After a Reset, Curiosity Is Operating Normally

TECH SPACE
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

TECH SPACE
Innovative communications satellite built by Maxar's SSL for PSN performing post-launch maneuvers

Arianespace launches first batch of OneWeb satellites

Goonhilly Partners with the Australian Space Agency to Drive New Opportunities Worldwide

Arianespace to orbit the first six satellites of the OneWeb constellation

TECH SPACE
A quantum magnet with a topological twist

New research opens door to more efficient chemical processes across spectrum of industries

Physicists build random anti-laser

Scientists produce colorless reservoir of platinum metal-like single atoms in liquid

TECH SPACE
New NASA mission could find more than 1,000 planets

Researchers discover a flipping crab feeding on methane seeps

Astronomers use new technique to find extrasolar planets

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

TECH SPACE
Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.