. 24/7 Space News .
TECH SPACE
Understanding the way liquid spreads through paper
by Staff Writers
Washington DC (SPX) Nov 30, 2016


Investigators documented spreading of ink on a filter paper of Whatman Grade 1, and analyzed the process with a scanning electron microscope. Scanning micrographic results show paper fiber distribution, along with the micro-particle-image-velocimetry measure of random liquid movement through the network. Researchers conclude this evidence confirms diffusive dynamics at work in the spread of liquid through a paper matrix. Image courtesy Suman Chakrabort. For a larger version of this image please go here.

Molecules move randomly, colliding with each other in continual motion. You can even smell this process at times; it's how perfume spreads across a room when the air is still. The process is termed diffusion and the theory of diffusion can be applied to liquid spreading through paper, too - a process at work in a range of everyday products, from ink pens to paper sampling patches for medical tests. Now, a team of researchers in India have developed a model that deepens their conceptual grasp of how liquids spread through paper.

"Liquid spreading in a paper is essentially random liquid motion through a randomly distributed network of fibers," said Suman Chakraborty, lead researcher of the investigation at the Indian Institute of Technology Kharagpur, and the Advancement Technology Development Centre, both located in Kharagpur, India. Results are published this week in Applied Physics Letters, from AIP Publishing.

Diffusion is a well-known process. But the team's elaboration of diffusion theory in the context of paper-liquid interactions, which pose tortuous fiber networks to transport dynamics, is novel and reveals new theoretical detail. In their experiment, the researchers observed ink spreading on filter paper using a scanning electron microscope.

The team mapped liquid spreading dynamics from a single fiber capillary to a larger network of the fibers. They then computed the resulting transport characteristics, with results confirming a generalized unified perspective of diffusion at work in the process of liquid moving through a paper matrix. Scanning micrographic images show paper fiber distributions, along with the micro-particle-image-velocimetry measure of random liquid movement through the network.

"Our study reveals that, despite such diversified uses of paper interacting with liquids, there is a fundamental uniqueness of liquid spreading through paper leading toward a general and unified theory about it," Chakraborty said.

The theory holds that molecules of a liquid move through the fiber network of paper following the principles of universal diffusive dynamics. "Paper is constituted of a network of fibers distributed randomly," said Chakraborty. "As a consequence, random motion of the liquid in all possible directions occurs. We know molecules move randomly and collide with each other, and this is the premise of diffusion."

Despite wide use of liquid-infused paper technologies, there are gaps in the understanding of the basic science behind its behavior. Chakraborty and his students, Kaustav Chaudhury and Shantimoy Kar, help fill that gap.

By understanding liquid spread in the paradigm of diffusion, scientists can control it more precisely to create and refine new products that involve liquid spreading through paper. For example, current markets have validated an important potential property of paper: acting as the essential building block of a rapid diagnostic kit in an ultra-low-cost paradigm.

Examples of this application include pregnancy test strips; alkalinity or acidity tests of beauty and baby soaps using a paper strip; paper-strips for checking water quality; and medical diagnosis aided by paper-strip tests of urine, saliva and blood. The author's diffusion model of liquid spreading in paper can also improve papers and inks used for writing, drawing and painting.

Next, the investigators plan to develop smart and compact technologies for diagnostic purposes, advancing the existing paper based platforms.

"The key objectives are to obtain rapid results at the expense of low costs. To this end, the paper shows a promising prospect of being a tool to serve both the objectives. The present work, as we believe, will pave the way for the design and development of the paper-based technologies to serve a wider public," Chakraborty said.

The article, "Diffusive dynamics on paper matrix," is authored by Kaustav Chaudhury, Shantimoy Kar and Suman Chakraborty. The article will appear in the journal Applied Physics Letters on November 29, 2016 (DOI: 10.1063/1.4966992).


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Ames Laboratory scientists create first intermetallic double salt with platinum
Washington DC (SPX) Nov 25, 2016
Scientists at the U.S. Department of Energy's Ames Laboratory are being credited with creating the first intermetallic double salt with platinum. Materials researchers Anja-Verena Mudring and Volodymyr Smetana were the first to create and accurately characterize the compound. Cesium platinide hydride, or 4Cs2Pt?CsH, forms a translucent ruby red crystal and can exist only in an inert environment ... read more


TECH SPACE
Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

NASA on the hunt for space poop geniuses

Orion Crew Module Adapter Lifted in Processing Facility at NASA's Kennedy Space Center

Expandable Habitat Reveals Important Early Performance Data

TECH SPACE
Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

TECH SPACE
Mars Ice Deposit Holds as Much Water as Lake Superior

Computer glitch blamed for European Mars lander crash

ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

TECH SPACE
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

TECH SPACE
Vita: next Space Station mission name and logo

Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

TECH SPACE
Inside tiny tubes, water turns solid when it should be boiling

Model could shatter a mystery of glass

More reliable way to produce single photons for quantum information imprinting

For platinum catalysts, tiny squeeze gives big boost in performance

TECH SPACE
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

TECH SPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.