24/7 Space News
ENERGY TECH
Underground water could be the solution to green heating and cooling
File illustration showing a map of underground water storage across the US.
Underground water could be the solution to green heating and cooling
by Staff Writers
Berkeley CA (SPX) Apr 10, 2023

About 12% of the total global energy demand comes from heating and cooling homes and businesses. A new study suggests that using underground water to maintain comfortable temperatures could reduce consumption of natural gas and electricity in this sector by 40% in the U.S. The approach, called aquifer thermal energy storage (ATES), could also help prevent blackouts caused by high power demand during extreme weather events.

"We need storage to absorb the fluctuating energy from solar and wind, and most people are interested in batteries and other kinds of electrical storage. But we were wondering whether there's any opportunity to use geothermal energy storage, because heating and cooling is such a predominant part of the energy demand for buildings," said first author A.T.D Perera, a former postdoctoral researcher at Lawrence Berkeley National Laboratory (Berkeley Lab), now at Princeton University's Andlinger Center for Energy and Environment.

"We found that, with ATES, a huge amount of energy can be stored, and it can be stored for a long period of time," Perera said. "As a result, the heating and cooling energy demand during extreme hot or cold periods can be met without adding an additional burden on the grid, making urban energy infrastructure more resilient."

The study, published this week in Applied Energy, is one of the first examinations of how ATES could fit into the larger goal of decarbonizing U.S. energy systems by storing intermittent renewable energy to use when the sun isn't shining and the turbines aren't spinning. After building a comprehensive technological and economic simulation of an energy system, the authors found that ATES is a compelling option for heating and cooling energy storage that, alongside other technologies such as batteries, could help end our reliance on fossil fuel-derived backup power and enable a fully renewable grid.

Putting thermodynamics to work
ATES is a delightfully simple concept that leverages the heat-absorbing property of water and the natural geological features of the planet. You simply pump water up from existing underground reservoirs and heat it at the surface in the summer with environmental heat or excess energy from solar, or any time of the year with wind. Then you pump it back down.

"It actually stays fairly hot because the Earth is a pretty good insulator," explained co-author Peter Nico, deputy director of the Energy Geosciences Division at Berkeley Lab and lead of the Resilient Energy, Water and Infrastructure Domain. "So then when you pull it up in the winter, months later, that water's way hotter than the ambient air and you can use it to heat your buildings. Or vice versa, you can pull up water and let it cool and then you can put it back down and store it until you need cooling during hot summer months. It's a way of storing energy as temperature underground."

ATES is not yet widely used in the U.S., though it is gaining recognition internationally, most notably in the Netherlands. One major perk is that these systems get "free" thermal energy from seasonal temperature changes, which can be bolstered by the addition of artificial heating and cooling generated by electricity. As such, they perform very well in areas with large seasonal fluctuations, but have the potential to work anywhere, so long as there is wind or solar to hook up to. In regards to other impacts, ATES systems are designed to avoid impinging upon critical drinking water resources - often the water used is from deeper aquifers than the drinking water supply - and do not introduce any chemicals into the water.

How does it perform?
To get some concrete numbers estimating how much energy ATES could save on the U.S. grid, and how much it would cost to deploy, the team designed a case study using a computational model of a neighborhood in Chicago. This virtual neighborhood was composed of 58 two-story, single-family residence buildings with typical residential heating and cooling that were hooked up to a simulation of an energy grid with multiple possible energy sources and storage options, including ATES. Future climate projections were used to understand how much of the neighborhood's total energy budget is taken up by heating and cooling demands currently, and how this might change in the future. Finally, a microgrid simulation was designed for the neighborhood that included renewable energy technologies and ATES to evaluate the technoeconomic feasibility and climate resilience. Putting all these factors together into one model would not have been possible without the team's diverse expertise across the energy geosciences, climate science, and building science fields.

The results showed that adding ATES to the grid could reduce consumption of petroleum products by up to 40%, though it would cost 15 to 20% more than existing energy storage technologies.

"But, on the other hand, energy storage technologies are having sharp cost reductions, and after just a few years of developing ATES, we could easily break even. That's why it's quite important that we start to invest in this research and start building real-world prototype systems," said Perera.

"ATES does not need space compared with above-ground tank-based water or ice storage systems. ATES is also more efficient and can scale up for large community cooling or heating compared with traditional geothermal heat pump systems that rely on heat transfer with the underground earth soil," added Tianzhen Hong, a co-author and senior scientist at the Building Technology and Urban Systems Division.

Another major benefit of ATES is that it will become more efficient as weather becomes more extreme in the coming years due to climate change. The hotter summers and harsher winters predicted by the world's leading climate models will have many downsides, but one upside is that they could supercharge the amount of free thermal energy that can be stored with ATES. "It's making lemonade, right? If you're going to have these extreme heat events, you might as well store some of that heat for when you have the extreme cold event," said Nico.

ATES will also make the future grid more resilient to outages caused by high power demands during heat waves - which happen quite often these days in many high-population U.S. areas, including Chicago - because ATES-driven cooling uses far less electricity than air conditioners, it only needs enough power to pump the water around.

"It's very much a realistic thing to do and this work was really about showing its value and how the costs can be offset," said Nico. "This technology is ready to go, so to speak. We just need to do it."

Research Report:Enhancing flexibility for climate change using seasonal energy storage (aquifer thermal energy storage) in distributed energy systems

Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Development of a self-resonant smart energy harvester
Yeongi-gun, South Korea (SPX) Mar 14, 2023
The Internet of Things (IoT) requires the installation free of time and space, therefore, needs independent power sources that are not restricted by batteries or power lines. Energy harvesting technology harvests wasted energy such as vibration, heat, light, and electromagnetic waves from everyday settings, such as automobiles, buildings, and home appliances, and converts it into electrical energy. Energy harvesters can generate sufficient electricity to run small electronic devices by harvesting ambien ... read more

ENERGY TECH
New book explores possibilities of colonizing planets, moons and beyond

Improving the accuracy of orbit prediction and position error covariance prediction

NASA, Boeing aiming for July launch of Starliner space capsule

Russia's only female cosmonaut praises ISS mission

ENERGY TECH
Musk's Twitter marks BBC, NPR as 'government funded' but not Tesla or SpaceX

Privately built, liquid-fuel rocket first in world to reach orbit in debut flight

Virgin Orbit files for bankruptcy, seeks buyer

Momentus' pioneering propulsion system completes initial tests in space

ENERGY TECH
Ready for Software Upgrade Sols 3786-3788

MOXIE Celebrates 2 Years on Mars: Discoveries and Work Left To Do

First Mars Sample Depot shaped by Rover, Lander, and Helicopter

NASA's Perseverance Collects First Mars Sample of New Science Campaign

ENERGY TECH
China's inland space launch site advances commercial services

China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

ENERGY TECH
Unseenlabs ready for Bro-9 satellite launch dedicated vessel geolocation from space

Kenya to launch first operational satellite next week

O'Shaughnessy Ventures announces investment in Atomos Space

Globalstar announces $200M non-convertible financing to satisfy remaining capital needs

ENERGY TECH
Electrification push will have enormous impacts on critical metals supply chain

Lightning strike creates phosphorus material for the first time on Earth

News presenter generated with AI appears in Kuwait

Integral safe at last

ENERGY TECH
Do Earth-like exoplanets have magnetic fields

New paper investigates exoplanet climates

JWST confirms giant planet atmospheres vary widely

Planet hunting and the origins of life

ENERGY TECH
Sabotaging Juice

Redness of Neptunian asteroids sheds light on early Solar System

Hubble monitors changing weather and seasons at Jupiter and Uranus

An explaination for unusual radar signatures in the outer solar system

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.