|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Basel, Switzerland (SPX) Sep 23, 2014
Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives for extremely precise measurements of molecular properties and may also contribute to the development of molecular clocks and quantum technology. The results were published in the scientific journal Nature Physics. Spectroscopy, the study of the interaction between matter and light, is probably the most important method for investigating the properties of molecules. Molecules can only absorb light at well-defined wavelengths which correspond to the difference between two quantum-mechanical energy states. This is referred to as a spectroscopic transition. An analysis of the wavelengths and the intensity of the transitions provides information about the chemical structure and molecular motions, such as vibration or rotation. In certain cases, however, the transition between two energy levels is not permitted. The transition is then called "forbidden". Nevertheless, this restriction is not categorical, meaning that forbidden transitions can still be observed with an extremely sensitive method of measurement. Although the corresponding spectra are extremely weak, they can be measured to an exceptionally accurate degree. They provide information on molecular properties with a level of precision not possible within allowed spectra.
Precise measurements of molecular properties In the present study, individual charged nitrogen molecules (ions) were generated in a well-defined molecular energy state. The ions were then implanted into a structure of ultra-cold, laser-cooled calcium ions - a Coulomb crystal - in an ultra-high vacuum chamber. The molecular ions were thus cooled to a few thousandths of a degree above absolute zero to localize in space. In this isolated, cold environment, the molecules could be investigated without perturbations over long periods of time. This enabled the researchers to excite and observe forbidden transitions in the infrared spectral domain using an intensive laser.
Potential for new applications It also offers perspectives to test fundamental concepts using spectroscopic precision measurements on single molecules which were up to now the domain of high-energy physics. One example is the important question whether the physical constants of nature are actually really constant. Matthias Germann, Xin Tong and Stefan Willitsch "Observation of electric-dipole-forbidden infrared transitions in cold molecular ions" Nature Physics, doi: 10.1038/nphys3085
Related Links University of Basel Understanding Time and Space
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |