. | . |
Uncorking champagne bottle produces supersonic shock waves by Staff Writers Washington DC (SPX) Jun 02, 2022
Opening a bottle of champagne traditionally marks the beginning of a festive celebration. Following the fun pop of the cork, a fizz of bubbles releases into the air, and finally, there is the pleasant tingle on the tongue. But there is much more that comes out of the pop than meets the senses, according to researchers in France and India. In Physics of Fluids, by AIP Publishing, computational fluid dynamics simulations revealed the formation, evolution, and dissipation of shock wave patterns as the carbon dioxide mixture shoots through the bottleneck in the first millisecond after cork popping. The findings could provide insight into the complex and transient behavior of supersonic flow in applications ranging from rocket launchers, ballistic missiles, and wind turbines to electronics manufacturing and underwater vehicles. The simulations build on experimental research in 2019 that showed, for the first time, the formation of shock waves during cork popping. "We wanted to better characterize the unexpected phenomenon of a supersonic flow that takes place during champagne bottle uncorking," said co-author Robert Georges, from the Universite de Rennes 1. "We hope our simulations will offer some interesting leads to researchers, and they might consider the typical bottle of champagne as a mini-laboratory." In the initial uncorking phase, the gas mixture is partially blocked by the cork, preventing the ejecting champagne from reaching the speed of sound. But as the cork further releases, the gas mixture escapes radially at supersonic speed, balancing its pressure through a succession of normal and oblique shock waves. The waves combine to form shock diamonds, patterns of rings typically seen in rocket exhaust plumes. The bottle symmetry leads to a crown-shaped supersonic expansion. Eventually, the pressure becomes too low to maintain an appropriate nozzle pressure ratio for supersonic speed at the bottleneck and cork's edge. "Our paper unravels the unexpected and beautiful flow patterns that are hidden right under our nose each time a bottle of bubbly is uncorked," said co-author Gerard Liger-Belair, from Universite de Reims Champagne-Ardenne. "Who could have imagined the complex and aesthetic phenomena hidden behind such a common situation experienced by any one of us?" The researchers plan to explore other parameters, such as temperature, volume, and bottleneck diameter, along with the physicochemical processes that accompany champagne bottle uncorking. For instance, they are interested in how supersonic flow is affected by ice particle formation caused by the drastic temperature drop as the fizz ejects from the bottle.
Research Report:"Computational Fluid Dynamic simulation of the supersonic CO2 flow during champagne cork popping
A new duality solves a physics mystery West Lafayette IN (SPX) Jun 02, 2022 In conventional wisdom, producing a curved space requires distortions, such as bending or stretching a flat space. A team of researchers at Purdue University have discovered a new method to create curved spaces that also solves a mystery in physics. Without any physical distortions of physical systems, the team has designed a scheme using non-Hermiticity, which exists in any systems coupled to environments, to create a hyperbolic surface and a variety of other prototypical curved spaces. "Our work ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |