![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Hilo HI (SPX) Jun 22, 2016
The world's most advanced adaptive optics system reveals "shocking" details on star formation in a new image released by the Gemini Observatory. An unprecedented view from the Gemini South telescope in Chile probes a swarm of young and forming stars that appear to have been shocked into existence. The group, known as N159W, is located some 158,000 light-years away in the Large Magellanic Cloud (LMC), a satellite to our Milky Way Galaxy. Despite the group's distance beyond our galaxy the extreme resolution of the image presents researchers with a fresh perspective on how prior generations of stars can trigger, or shock, the formation of a new generation of stars. "Because of the remarkable amount of detail, sensitivity, and depth in this image we identified about 100 new young stellar objects, our YSOs, in this region," says Benoit Neichel of the Laboratoire d'Astrophysique de Marseille, who worked with PhD student Anais Bernard on the research. Bernard expects to complete her PhD based upon this work in 2017. Bernard adds that YSO's are very red objects, often still enshrouded in a cocoon of the natal material from which they were born. "What we are seeing appears to be groups of YSOs forming at the edge of a bubble containing ionized gas expanding from an older generation of stars within the bubble." Astronomers refer to these areas of expanding gas as HII regions due to the abundance of ionized (energized) hydrogen gas. "In a very real sense these young stars are being shocked into existence by the expanding gas from these more mature stars," said Bernard. "Without this advanced adaptive optics technology on Gemini we wouldn't be able push our observations out to the distance of the LMC," said Neichel. "This gives us a unique chance to explore star formation in a different environment." He adds that part of the challenge is differentiating between "boring field stars" and the YSOs, which, he describes as "the gems that make this research possible." The research team, led by Neichel and Bernard, published their work in the journal Astronomy and Astrophysics. The team used the Gemini South telescope with the Gemini Multi-conjugate adaptive optics System (GeMS) combined with the Gemini South Adaptive Optics Imager (GSAOI). The Gemini South adaptive optics system uses a multi-conjugated configuration that samples turbulence in several layers in our atmosphere using a "constellation" of five laser guide stars. This system provides exceptionally large adaptive optics fields of view and high levels of correction to minimize the blurring effect of atmospheric distortions uniformly across the image (essentially to the theoretical, or "diffraction limit"). Research paper: "Deep GeMS/GSAOI Near-Infrared Observations of N159W in the Large Magellanic Cloud," A. Bernard et al., 2016, to appear in Astronomy and Astrophysics
Related Links Gemini Observatory Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |