. | . |
Ultrafast laser pulse created by golden nanoparticles by Staff Writers Helsinki, Finland (SPX) May 03, 2018
New study shows that organic dye material combined with metallic nanostructures can provide ultrafast lasing dynamics with short and rapidly appearing laser pulses. 'We wanted to find out how fast we can turn our laser device on and off. Generating laser pulses quickly can be very useful in information processing and can improve the response of some optoelectronic devices,' explains postdoctoral researcher Konstantinos Daskalakis at Aalto University. The samples used in the experiments are made out of gold nanoparticles placed on glass and immersed in an organic, light-emitting material. The nanoparticles are arranged very close to each other in a square array. Electric fields localised around the particles result in high field strengths that speed up the molecular dynamics in the organic dye. The electromagnetic fields and the conducting gold particles interact both with each other and the organic dye to generate a directional laser pulse that is ultrafast, one trillionth of a second long. Generating a laser of this kind is promising for all-optical switching and sensing and will potentially improve the speed of optical telecommunications and performance of devices that use light to process information, such as cameras and transistors. Very small nanolasers do not usually provide clearly directional beams. Arranging nanoparticles in an array considerably improves directionality. Such lasers have already been created in several laboratories in the world, but their potential for ultrafast pulses has not been proven before the experiments conducted at Aalto University. Measuring the properties of the pulses is very demanding because of their tremendous speed. 'The key achievement here is that we have succeeded in experimentally demonstrating that the laser pulses are indeed ultrafast. The lasing occurs in optical modes that are hybrids of light and the motion of electrons in metal. These modes are called surface lattice resonances,' explains Academy Professor Paivi Torma. The laser light is first squeezed by the metallic nanoparticles into sub-wavelength dimensions, and then it escapes from the surface lattice resonance modes as a picosecond-fast, concentrated laser pulse. 'These kinds of metal nanoparticle array lasers are excellent for generating pulsed laser radiation with a high modulation speed,' says doctoral student Aaro Vakevainen. The pulse generated from the nanoparticle-array laser is so fast that there are no conventional electronic cameras that can capture its dynamics. The researchers used another laser as a "camera", taking very fast pictures of the tiny laser. The method is called pump-probe spectroscopy.
Achieving unprecedented frequency control in miniature lasers Washington DC (SPX) Apr 30, 2018 Only a few decades ago, finding a particular channel on the radio or television meant dialing a knob by hand, making small tweaks and adjustments to hone in on the right signal. Of course, we now take such fine tuning for granted, simply pressing a button to achieve the same effect. This convenience is enabled by radio frequency synthesis, the generation of accurate signal frequencies from a single reference oscillator. The need for better radar in World War II drove the development of radio frequency c ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |