. | . |
Ultra-high energy events key to study of ghost particles by Staff Writers St. Louis MO (SPX) Feb 03, 2020
Physicists at Washington University in St. Louis have proposed a way to use data from ultra-high energy neutrinos to study interactions beyond the standard model of particle physics. The 'Zee burst' model leverages new data from large neutrino telescopes such as the IceCube Neutrino Observatory in Antarctica and its future extensions. "Neutrinos continue to intrigue us and stretch our imagination. These 'ghost particles' are the least understood in the standard model, but they hold the key to what lies beyond," said Bhupal Dev, assistant professor of physics in Arts and Sciences and author of a new study in Physical Review Letters. "So far, all nonstandard interaction studies at IceCube have focused only on the low-energy atmospheric neutrino data," said Dev, who is part of Washington University's McDonnell Center for the Space Sciences. "The 'Zee burst' mechanism provides a new tool to probe nonstandard interactions using the ultra-high energy neutrinos at IceCube."
Ultra-high energy events For example, the fact that neutrinos have such a tiny mass already requires scientists to consider theories beyond the standard model. In such theories, "neutrinos could have new nonstandard interactions with matter as they propagate through it, which will crucially affect their future precision measurements," Dev said. In 2012, the IceCube collaboration reported the first observation of ultra-high energy neutrinos from extraterrestrial sources, which opened a new window to study neutrino properties at the highest possible energies. Since that discovery, IceCube has reported about 100 such ultra-high energy neutrino events. "We immediately realized that this could give us a new way to look for exotic particles, like supersymmetric partners and heavy decaying dark matter," Dev said. For the previous several years, he had been looking for ways to find signals of new physics at different energy scales and had co-authored half a dozen papers studying the possibilities. "The common strategy I followed in all these works was to look for anomalous features in the observed event spectrum, which could then be interpreted as a possible sign of new physics," he said. The most spectacular feature would be a resonance: what physicists witness as a dramatic enhancement of events in a narrow energy window. Dev devoted his time to thinking about new scenarios that could give rise to such a resonance feature. That's where the idea for the current work came from. In the standard model, ultra-high energy neutrinos can produce a W-boson at resonance. This process, known as the Glashow resonance, has already been seen at IceCube, according to preliminary results presented at the Neutrino 2018 conference. "We propose that similar resonance features can be induced due to new light, charged particles, which provides a new way to probe nonstandard neutrino interactions," Dev said.
Bursting onto the neutrino scene "These light, charged Zee-scalars could give rise to a Glashow-like resonance feature in the ultra-high energy neutrino event spectrum at the IceCube Neutrino Observatory," Dev said. Because the new resonance involves charged scalars in the Zee model, they decided to call it the 'Zee burst.' Yicong Sui at Washington University and Sudip Jana at Oklahoma State, both graduate students in physics and co-authors of this study, did extensive event simulations and data analysis showing that it is possible to detect such a new resonance using IceCube data. "We need an effective exposure time of at least four times the current exposure to be sensitive enough to detect the new resonance - so that would be about 30 years with the current IceCube design, but only three years of IceCube-Gen 2," Dev said, referring to the proposed next-generation extension of IceCube with 10 km3 detector volume. "This is an effective way to look for the new charged scalars at IceCube, complementary to direct searches for these particles at the Large Hadron Collider."
An ultrafast microscope for the quantum world Munich, Germany (SPX) Jan 30, 2020 The operation of components for future computers can now be filmed in HD quality, so to speak. Manish Garg and Klaus Kern, researchers at the Max Planck Institute for Solid State Research in Stuttgart, have developed a microscope for the extremely fast processes that take place on the quantum scale. This microscope - a sort of HD camera for the quantum world - allows the precise tracking of electron movements down to the individual atom. It should therefore provide useful insights when it comes to ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |