. | . |
US Army camera captures explosives in fine detail by Staff Writers Washington DC (SPX) Jun 01, 2016
When the script of Lawrence of Arabia called for wrecking a train, director David Lean found it easiest to go ahead and wreck a train, orchestrating and filming it with expert precision. Similarly, while it's possible to study explosives, sans explosives, new techniques involving high-speed, high-fidelity imaging with optical filtering and signal processing techniques have recently made setting off explosives and capturing the data in real-time a reasonable alternative to developing a new simulation. "Advances in high speed imaging, especially the recent availability of extremely fast cameras and light sources - (those) approaching hundreds of kHz illumination and imaging rates at near megapixel image sizes - have brought experimental imaging closer to the resolution achievable with simulations," said Kevin L. McNesby a Research Chemist at the U.S. Army Research Laboratory in Aberdeen, Maryland. McNesby and his colleagues at the Army Research Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory report their research this week in the journal Review of Scientific Instruments, from AIP Publishing. The advances in image capturing allow the researchers to lower costs for obtaining information about explosive behavior by capturing multiple variables - pressure, temperature and chemical species maps - for each shot, rather than a single point measurement. This allows them to run one explosion, rather than several. The researchers' method of information gathering involves pyrometry, a technique for estimating temperature of incandescent bodies based upon their spectra of emitted thermal radiation. Their setup, which is specific to the type of explosive being investigated, employs a two-color imaging pyrometer, which consists of two monochrome cameras filtered at 700 nanometers and 900 nanometers, and a full-color single pyrometer that achieves wavelength resolution with a Bayer-type mask covering the sensor chip. For each of their rigs, described in full in the paper, the framing speeds are 20,000-40,000 frames per second, at a resolution of approximately 400 x 500 pixels with an exposure per frame of one to tens of microseconds. The pyrometers are also able to capture the air shock structure of the detonation event, allowing for simultaneous measurement of temperature and pressure. Information regarding the chemical species is similarly captured via measuring the emission spectrum of each targeted molecule. Their setup allows them to obtain a spatial resolution for a one-kilogram explosive charge down to the one-millimeter scale. However, these mapping techniques result in wider error bars than those of 'legacy' point measurement techniques - an issue McNesby and his colleagues hope to improve on. Future work for the researchers will also include installing a full upgrade of their imaging rig, which will result in a tenfold increase in speed at full resolution. "Quantitative imaging of explosions with high-speed cameras," is authored by K.L. McNesby, B.E. Homan, R.A. Benjamin, V.M. Boyle Sr., J.M. Densmore and M.M. Biss. It appears in the journal Review of Scientific Instruments on May 31, 2016 (DOI: 10.1063/1.4949520)
Related Links American Institute of Physics The latest in Military Technology for the 21st century at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |