. 24/7 Space News .
CARBON WORLDS
UNIST introduces novel method to grow elastic diamonds
by Staff Writers
Ulsan, South Korea (SPX) May 29, 2018

This image shows ultralarge and reversible elastic deformation.

Diamonds is the strongest naturally occurring material on Earth. It is also renowned for its incomparable properties, such as high stiffness, exceptional thermal conductivity, high chemical resistance, and high optical transparency. Although these remarkable properties of diamond make it highly desirable for many scientific and technological applications, progress has been slow due to its brittleness.

A recent study, affiliated with UNIST has unveiled that brittle diamonds can be bent and stretched elastically when made into ultrafine needles.

This breakthrough has been jointly conducted by Distinguished Professor Feng Ding's team from the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science (IBS) at UNIST, in collaboration with an international team of researchers from Massachusetts Institute of Technology (MIT), City University of Hong Kong, and Nanyang Technological University. The results of the study has been reported this week in the prestigious jornal Science.

The team demonstrated that their nanoscale diamond needles could flex and stretch by as much as nine percent without breaking, then return to their original shape. Their discovery completely overturns previous theories that diamonds are brittle. Their results, the research team say, could open up unprecedented possibilities for tuning its optical, optomechanical, magnetic, phononic, and catalytic properties through elastic strain engineering.

"Ultrahigh elasticity of diamond is due to the paucity of internal defects."

Ordinary diamond in bulk form has a limit of well below one percent stretch, according to the researchers. In the study, Professor Ming's group handled the chemical calculation and the analysis of the crystal structure of diamond and ascribed that the ultrahigh elasticity of the diamond nanoneedles is due to the paucity of internal defects and the relatively smooth surface.

"Diamonds, either natural or artificial, have internal defects in their crystal structure," says Professor Ding. "When outside force is applied to these defects, they can crack and eventually break."

In the study, via detailed simulations, Professor Ding determined precisely how much stress and strain the diamond needles could accommodate without breaking. He determined the corresponding maximum local stress was close to the known theoretical limit achievable with a perfect, defect-free diamond. He noted that defect-free diamonds can stretch by as much as 12% without breaking.

"Diamond needles stretched and flexed as much as 9% without any breakage."

The research team from the City University of Hong Kong succeeded in fabricating nanoscale diamond needles by plasma-induced etching of diamond thin films deposited on Si substrates through bias-assisted chemical vapor deposition (CVD). As a result, the team was able to demonstrate ultralarge, fully reversible elastic deformation of nanoscale (~300 nanometers) single-crystalline and polycrystalline diamond needles.

The team measured the bending of the diamond needles, which were grown through a chemical vapor deposition process and then etched to their final shape, by observing them in a scanning electron microscope while pressing down on the needles with a standard nanoindenter diamond tip. They demonstrated experimentally that single-crystalline needles are simultaneously ultrastrong and susceptible to large elastic deformation, with fully reversible mechanical deformability of up to a maximum of 9% of elastic tensile strain.

The research team expects that their findings could lead to performance enhancement in applications, involving bioimaging and biosensing, strain-mediated nanomechanical resonators, drug delivery, data storage, and optomechanical devices, as well as ultrastrength nanostructures. Besides, Professor Ding noted that large elastic deformation in nanoscale diamond needles will be suitable for use in next-generation flexible and foldable displays.

Research paper


Related Links
Ulsan National Institute of Science and Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Non-plasma high-speed anisotropic diamond etching with nickel in 1000 water vapor
Kanazawa, Japan (SPX) May 25, 2018
World energy consumption has been increasing year by year, and a global-scale energy shortage is of great concern. Because of this reason, it is important to use the energy (electricity) produced by power generation even more efficiently, the key to which is the development of power devices*1) that control the electric power. The present mainstream Si power devices have been highly developed but their performance is thought to be close to maximum, which means that further development becomes very ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA Administrator Statement on Space Policy Directive-2

Putin, Abe speak to ISS astronauts from Kremlin

NASA, Space Station Partners Announce Future Mission Crew Members

NASA awards $43M to US Small Businesses for Tech Research

CARBON WORLDS
What really happened to that melted NASA Camera?

Aerojet Rocketdyne Thrusters Help Deliver Cygnus to International Space Station

Two sportscar-sized satellites in orbit to measure Earth's water

Russia May Renew 'Satan' Missile Launches to Place Satellites In Orbit

CARBON WORLDS
Scientists Shrink Chemistry Lab to Seek Evidence of Life on Mars

Opportunity Collects Panoramas for Site Awareness and Future Drive Planning

Why we won't get to Mars without teamwork

Curiosity Mars rover back on drill duty

CARBON WORLDS
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

CARBON WORLDS
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

CARBON WORLDS
Advanced materials: processing glass like a polymer

Astonishing effect enables better palladium catalysts

Focus on space debris

Aireon System Deployment Continues with Sixth Successful Launch

CARBON WORLDS
Take a Virtual Trip to a Strange New World with NASA

Kepler Begins 18th Observing Campaign with a Focus On Star Clusters

A simple mechanism could have been decisive for the development of life

Linguists gather in L.A. to ponder the Language of ET

CARBON WORLDS
SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

OSL Optics to help unlock the secrets of Jupiter's Icy Moons

Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.