Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
UC Riverside physicists discover new way to produce antimatter-containing atom
by Staff Writers
Riverside CA (SPX) Jul 12, 2011


Researchers Tomu H. Hisakado, Harry Tom, Allen Mills and David Cassidy have found a new way to produce positronium.

Physicists at the University of California, Riverside report that they have discovered a new way to create positronium, an exotic and short-lived atom that could help answer what happened to antimatter in the universe, why nature favored matter over antimatter at the universe's creation.

Positronium is made up of an electron and its antimatter twin, the positron. It has applications in developing more accurate Positron Emission Tomography or PET scans and in fundamental physics research.

Recently, antimatter made headlines when scientists at CERN, the European Organisation for Nuclear Research, trapped antihydrogen atoms for more than 15 minutes. Until then, the presence of antiatoms was recorded for only fractions of a second.

In the lab at UC Riverside, the physicists first irradiated samples of silicon with laser light. Next they implanted positrons on the surface of the silicon. They found that the laser light frees up silicon electrons that then bind with the positrons to make positronium.

"With this method, a substantial amount of positronium can be produced in a wide temperature range and in a very controllable way," said David Cassidy, an assistant project scientist in the Department of Physics and Astronomy, who performed the research along with colleagues. "Other methods of producing positronium from surfaces require heating the samples to very high temperatures. Our method, on the other hand, works at almost any temperature - including very low temperatures."

Cassidy explained that when positrons are implanted into materials, they can sometimes get stuck on the surface, where they will quickly find electrons and annihilate.

"In this work, we show that irradiating the surface with a laser just before the positrons arrive produces electrons that, ironically, help the positrons to leave the surface and avoid annihilation," said Allen Mills, a professor of physics and astronomy, in whose lab Cassidy works. "They do this by forming positronium, which is spontaneously emitted from the surface. The free positronium lives more than 200 times longer than the surface positrons, so it is easy to detect."

Study results appear in the July 15 issue of Physical Review Letters.

The researchers chose silicon in their experiments because it has wide application in electronics, is robust, cheap and works efficiently.

"Indeed, at very low temperatures, silicon may be the best thing there is for producing positronium, at least in short bursts," Cassidy said.

The researchers' eventual goal is to perform precision measurements on positronium in order to better understand antimatter and its properties, as well as how it might be isolated for longer periods of time.

Cassidy and Mills were joined in the research by Harry Tom, a professor and the chair of physics and astronomy, and Tomu H. Hisakado, a graduate student in Mills's lab.

In the near future, this research team hopes to cool the positronium down to lower energy emission levels for other experimental uses, and create also a "Bose-Einstein condensate" for positronium - a collection of positronium atoms that are in the same quantum state.

"The creation of a Bose-Einstein condensate of positronium would really push the boundaries of what is possible in terms of real precision measurements," Cassidy said. "Such measurements would shed more light on the properties of antimatter and may help us probe further into why there is asymmetry between matter and antimatter in the universe."

.


Related Links
University of California - Riverside
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
NIST mechanical micro-drum cooled to quantum ground state
Boulder CO (SPX) Jul 11, 2011
Showcasing new tools for widespread development of quantum circuits made of mechanical parts, scientists from the National Institute of Standards and Technology (NIST) have demonstrated a flexible, broadly usable technique for steadily calming the vibrations of an engineered mechanical object down to the quantum "ground state," the lowest possible energy level. Described in a Nature paper ... read more


TIME AND SPACE
Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

TIME AND SPACE
Two Possible Sites for Next Mars Rover

Scientists uncover evidence of a wet Martian past in desert

NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

TIME AND SPACE
The Lure of the High Frontier

High costs, risks, policy shift make U.S. quit space shuttle program

Obama hails final shuttle flight, eyes Mars next

End of shuttle flights only a 'bottleneck'

TIME AND SPACE
Time Enough for Tiangong

China launches experimental satellite

China to launch an experimental satellite in coming days

China to launch new communication satellite

TIME AND SPACE
Atlantis docks at space station for last time

New Research and Technology Experiments Headed to the International Space Station on STS-135/ULF7

Russia's Progress M-11M readjusts ISS orbit

Training for ISS flight operations

TIME AND SPACE
Final Soyuz launcher integration is underway for Arianespace Globalstar mission from Kazakhstan

Arianespace to launch THOR 7 satellite for Telenor

Space X Dragon Spacecraft Returns To Florida

Arianespace Launch Postponed At Least 20 Days

TIME AND SPACE
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

TIME AND SPACE
EA buying PopCap Games for $750 million

Debris may be on collision course with space lab: NASA

1C adds Russian intrigue to action videogames

Google eBooks reader to debut in US




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement