. 24/7 Space News .
SPACE MEDICINE
UCLA scientists develop durable material for flexible artificial muscles
by Staff Writers
Menlo Park CA (SPX) Jul 11, 2022

stock illustration only

UCLA materials scientists and colleagues at the nonprofit scientific research institute SRI International have developed a new material and manufacturing process for creating artificial muscles that are stronger and more flexible than their biological counterparts.

"Creating an artificial muscle to enable work and detect force and touch has been one of the grand challenges of science and engineering," said Qibing Pei, a professor of materials science and engineering at the UCLA Samueli School of Engineering and the corresponding author of a study recently published in Science.

In order for a soft material to be considered for use as an artificial muscle, it must be able to output mechanical energy and remain viable under high-strain conditions - meaning it does not easily lose its form and strength after repeated work cycles. While many materials have been considered contenders for making artificial muscles, dielectric elastomers (DE) - lightweight materials with high elastic energy density - have been of special interest because of their optimal flexibility and toughness.

Dielectric elastomers are electroactive polymers, which are natural or synthetic substances composed of large molecules that can change in size or shape when stimulated by an electric field. They can be used as actuators, enabling machines to operate by transforming electric energy into mechanical work.

Most dielectric elastomers are made of either acrylic or silicone, but both materials have drawbacks. While traditional acrylic DEs can achieve high actuation strain, they require pre-stretching and lack flexibility. Silicones are easier to make, but they cannot withstand high strain.

Utilizing commercially available chemicals and employing an ultraviolet (UV) light curing process, the UCLA-led research team created an improved acrylic-based material that is more pliable, tunable and simpler to scale without losing its strength and endurance. While the acrylic acid enables more hydrogen bonds to form, thereby making the material more movable, the researchers also adjusted the crosslinking between polymer chains, enabling the elastomers to be softer and more flexible. The resulting thin, processable, high-performance dielectric elastomer film, or PHDE, is then sandwiched between two electrodes to convert electrical energy into motion as an actuator.

Each PHDE film is as thin and light as a piece of human hair, about 35 micrometers in thickness, and when multiple layers are stacked together, they become a miniature electric motor that can act like muscle tissue and produce enough energy to power motion for small robots or sensors. The researchers have made stacks of PHDE films varying from four to 50 layers.

"This flexible, versatile and efficient actuator could open the gates for artificial muscles in new generations of robots, or in sensors and wearable tech that can more accurately mimic or even improve humanlike motion and capabilities," Pei said.

Artificial muscles fitted with PHDE actuators can generate more megapascals of force than biological muscles and they also demonstrate three to 10 times more flexibility than natural muscles.

Multilayered soft films are usually manufactured via a "wet" process that involves depositing and curing liquid resin. But that process can result in uneven layers, which make for a poor- performing actuator. For this reason, up to now, many actuators have only been successful with single-layer DE films.

The UCLA research involves a "dry" process by which the films are layered using a blade and then UV-cured to harden, making the layers uniform. This increases the actuator's energy output so that the device can support more complex movements.

The simplified process, along with the flexible and durable nature of the PHDE, allows for the manufacture of new soft actuators capable of bending to jump, like spider legs, or winding up and spinning. The researchers also demonstrated the PHDE actuator's ability to toss a pea-sized ball 20 times heavier than the PHDE films. The actuator can also expand and contract like a diaphragm when a voltage is switched on and off, giving a glimpse of how artificial muscles could be used in the future.

The advance could lead to soft robots with improved mobility and endurance, and new wearable and haptic technologies with a sense of touch. The manufacturing process could also be applied to other soft thin-film materials for applications including microfluidic technologies, tissue engineering or microfabrication.

Other authors of the study from the UCLA Materials Science and Engineering Department are Ye Shi, Erin Askounis, Roshan Plamthottam, Zihang Peng, Kareem Youssef and Junhong Pu -all current or former members of Pei's Soft Materials Research Lab at UCLA. Shi, Askounis and Plamthottam are co-lead authors of the study. The authors from SRI International are Tom Libby and Ron Pelrine.

The research was supported by the Defense Advanced Research Projects Agency (DARPA).

The team, through the UCLA Technology Development Group, has filed for an international patent on the technology.

Research Report:A processable, high-performance dielectric elastomer and multilayering process


Related Links
SRI International
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
The path of most resistance could help limit bone loss during spaceflight
Calgary, Canada (SPX) Jul 01, 2022
Astronauts that have returned after spaceflights over three months may show signs of incomplete bone recovery even after one year on Earth, but adding in more resistance-based exercises during spaceflight may help limit bone loss. The small study, published in Scientific Reports, on 17 international astronauts found that while the shinbone partially recovers, the sustained bone losses after one year are equivalent to ten years of normal age-related bone loss on Earth. Steven Boyd and colleag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Terran Orbital completes CAPSTONE's First TCM Burn

Jacobs Awarded $3.9B Engineering and Science Contract at NASA

CAPSTONE deploys from Rocket Lab Lunar Photon into Lunar Transfer Orbit

RIT receives NASA funding to develop new diffractive solar sail concepts

SPACE MEDICINE
Rocket Lab Introduces Responsive Space Program

Commercial space launch site begins construction

Australia's space future blasts off from Nhulunbuy

Elon Musk had twins with company exec last year: report

SPACE MEDICINE
Searching for Sand Transport

Let's go to Mars

Humans on Mars: Pathways toward sustainable settlement

Sometimes things get complicated

SPACE MEDICINE
Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

Shenzhou XIII astronauts doing well after returning to Earth

SPACE MEDICINE
ESA astronaut selection in the final stages

Kleos Space invests for future growth in the UK

SatixFy Technology enables first 5G link through a LEO constellation

SES-22 set to launch on Falcon 9 June 29

SPACE MEDICINE
Researchers use quantum-inspired approach to increase lidar resolution

Smart textiles sense how their users are moving

WVU researchers won't hit snooze on mattress recycling needs

MIT engineers design surfaces that make water boil more efficiently

SPACE MEDICINE
Building blocks for RNA-based life abound at center of our galaxy

NASA Helps Decipher How Some Distant Planets Have Clouds of Sand

Could we eavesdrop on communications that pass through our solar system

NASA Rockets Launch from Australia to Seek Habitable Star Conditions

SPACE MEDICINE
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.