. | . |
UCLA physicists develop world's best quantum bits by Staff Writers Los Angeles CA (SPX) May 19, 2020
A team of researchers at UCLA has set a new record for preparing and measuring the quantum bits, or qubits, inside of a quantum computer without error. The techniques they have developed make it easier to build quantum computers that outperform classical computers for important tasks, including the design of new materials and pharmaceuticals. The research is published in the peer-reviewed, online open-access journal, npj Quantum Information, published by Nature and including the exceptional research on quantum information and quantum computing. Currently, the most powerful quantum computers are "noisy intermediate-scale quantum" (NISQ) devices and are very sensitive to errors. Error in preparation and measurement of qubits is particularly onerous: for 100 qubits, a 1% measurement error means a NISQ device will produce an incorrect answer about 63% of the time, said senior author Eric Hudson, a UCLA professor of physics and astronomy. To address this major challenge, Hudson and UCLA colleagues recently developed a new qubit hosted in a laser-cooled, radioactive barium ion. This "goldilocks ion" has nearly ideal properties for realizing ultra-low error rate quantum devices, allowing the UCLA group to achieve a preparation and measurement error rate of about 0.03%, lower than any other quantum technology to date, said co-senior author Wesley Campbell, also a UCLA professor of physics and astronomy. The development of this exciting new qubit at UCLA should impact almost every area of quantum information science, Hudson said. This radioactive ion has been identified as a promising system in quantum networking, sensing, timing, simulation and computation, and the researchers' paper paves the way for large-scale NISQ devices.
The Space Station's coolest experiment gets astronaut-assisted upgrade Pasadena CA (JPL) May 13, 2020 NASA's Cold Atom Laboratory, a facility for fundamental physics experiments on the International Space Station, recently underwent a major hardware upgrade with the help of astronauts Christina Koch and Jessica Meir. By chilling atom clouds to just above absolute zero - the lowest temperature matter can reach - Cold Atom Lab enables scientists to directly observe unique atomic behaviors, helping answer questions about how our world works at the smallest scales. The new hardware will dramatically expand ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |