. 24/7 Space News .
CHIP TECH
Two technical breakthroughs make high-quality 2D materials possible
by Staff Writers
St. Louis MO (SPX) Jan 19, 2023

Non-epitaxial single crystalline 2D materials at wafer-scale.

Researchers have been looking to replace silicon in electronics with materials that provide a higher performance and lower power consumption while also having scalability. An international team is addressing that need by developing a promising process to develop high-quality 2D materials that could power next-generation electronics.

Sang-Hoon Bae, an assistant professor of mechanical engineering and materials science at the McKelvey School of Engineering at Washington University in St. Louis, is one of three researchers leading the multi-institutional work published Jan. 18 in Nature, together with his doctoral student Justin S. Kim and postdoctoral research associate Yuan Meng.

The work, which includes two technical breakthroughs, is the first to report that their method to grow semiconductor materials, known as transition metal dichalcogenides (TMD), would make devices faster and use less power.

The team, co-led by Jeehwan Kim, an associate professor of mechanical engineering and of materials science and engineering at the Massachusetts Institute of Technology, and Jin-Hong Park, a professor of information and communication engineering and of electronic and electrical engineering at Sungkyunkwan University, had to overcome three extremely difficult challenges to create the new materials: securing single crystallinity at wafer-scale; preventing irregular thickness during growth at wafer-scale; and vertical heterostructures at wafer-scale.

Bae said 3D materials go through a process of roughening and smoothing to become an even-surfaced material. However, 2D materials don't allow this process, resulting in an uneven surface that makes it difficult to have a large-scale, high-quality, uniform 2D material.

"We designed a geometric-confined structure that facilitates kinetic control of 2D materials so that all grand challenges in high-quality 2D material growth are resolved," Bae said. "Thanks to the facilitated kinetic control, we only needed to grow self-defined seeding for a shorter growing time."

The team made another technical breakthrough by demonstrating single-domain heterojunction TMDs at the wafer scale, or a large scale, by layer-by-layer growth. To confine the growth of the nuclei, they used various substrates made from chemical compounds. These substrates formed a physical barrier that prevented lateral-epitaxy formation and forced vertical growth.

"We believe that our confined growth technique can bring all the great findings in physics of 2D materials to the level of commercialization by allowing the construction of single domain layer-by-layer heterojunctions at the wafer-scale," Bae said.

Bae said other researchers are studying this material at very small sizes of tens to hundreds of micrometers.

"We scaled up because we can solve the issue by producing the high-quality material at large scale," Bae said. "Our achievement will lay a strong foundation for 2D materials to fit into industrial settings."

Research Report:Non-epitaxial single-crystal 2D material growth by geometrical confinement


Related Links
Washington University in St. Louis
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Data reveal a surprising preference in particle spin alignment
Upton NY (SPX) Jan 23, 2023
Given the choice of three different "spin" orientations, certain particles emerging from collisions at the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, appear to have a preference. As described in a paper just published in Nature by RHIC's STAR collaboration, the results reveal a preference in global spin alignment of particles called phi mesons. Conventional mechanisms-such as the magnetic field strength or the sw ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Astronauts conduct first ISS spacewalk of 2023

RIT scientists help rediscover earliest known star map using multispectral imaging

Crop seeds, microbial strains tested in China's two space missions unveiled

US, Japan sign Space Collaboration Agreement at NASA Headquarters

CHIP TECH
Boeing CST-100 Starliner Crew and Service Modules Mated

SEXBOMB being moved to Cornwall Space Port for hypersonic developments

Vulcan rocket one step closer to launch

Update on "Start Me Up" mission anomaly

CHIP TECH
Ingenuity's 40th flight on Mars tracks a rocky road

ALUULA Composites selected for future Mars missions

Our Encanto: Sols 3716-3717

What is the Chemistry and Mineralogy Instrument?

CHIP TECH
China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

First rocket launch of the New Year leaves Wenchang for space

CHIP TECH
Britain's Tim Peake steps down from ESA astronaut corps

Amazonas Nexus at Cape Canaveral for final processing

Inmarsat announces trans-Atlantic 'stepping stone' trip for latest British satellite

Carrier rockets place four satellites into orbit

CHIP TECH
The last mysteries of mica

Incorporation of water molecules into layered materials impacts ion storage capability

Microchip radiation-tolerant power management devices will target LEO applications

UK to offer 600m pounds in pollution-cutting support for steelmakers: media

CHIP TECH
New small laser device can help detect signs of life on other planets

How do rocky planets really form

NASA's Webb confirms its first exoplanet

Distant star's dimming was likely a 'dusty' companion getting in the way, astronomers say

CHIP TECH
Tumultuous migration on the edge of the Hot Neptune Desert

SwRI scientists find evidence for magnetic reconnection between Ganymede and Jupiter

SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.