Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Two-dimensional dirac materials: Structure, properties, and rarity
by Staff Writers
Beijing (SPX) Apr 02, 2015


This is a scheme of 2-D materials with Dirac cones. Image courtesy Science China Press. For a larger version of this image please go here.

Graphene, a two-dimensional (2D) honeycomb sheet composed of carbon atoms, has attracted intense interests worldwide because of its outstanding properties and promising prospects in both basic and applied science. The great development of graphene is closely related to the unique electronic structure, that is, Dirac cones. The cone which represents linear energy dispersion at Fermi level gives graphene massless fermions, leading to various quantum Hall effects, ultra high carrier mobility, and many other novel phenomena and properties.

Dirac cone is special but might not unique to graphene. Recently, more and more 2D materials have been predicted to possess Dirac cones, such as silicene and germanene (graphene-like silicon and germanium, respectively), several graphynes (sp-sp2 carbon allotropes), and so on. But these 2D Dirac systems are so rare compared to the numerous 2D materials. A deep understanding of all known 2D Dirac systems and a strategy to seek for new ones are needed.

A new paper published in National Science Review presented the recent progress on theoretical studies of various 2D Dirac materials.

In this paper, the structural and electronic properties of graphene, silicene, germanene, graphynes, several boron and carbon allotropes, transition metal oxides, organic and organometallic crystals, square MoS2, and artificial lattices (electron gases and ultracold atoms) were summarized.

As the author stated, "most Dirac materials have spatial inversion symmetry", "Many of them are bipartite and composed of only one element", and "hexagonal honeycomb structure is common in atomic Dirac materials". Since "the Dirac-cone structure gives graphene massless fermions, leading to half-integer/fractional/fractal quantum Hall effects, ultrahigh carrier mobility", other 2D Dirac systems were predicted to have similar properties, and some even possess new physics beyond graphene.

Based on the above discussions, the authors further investigated how Dirac points move and merge in these systems. They mentioned that strain can move the Dirac point to a new k (reciprocal) location. But "when two Dirac points with opposite Berry phases move in the k space under any perturbation and arrive at the same point, they merge and their Berry phases annihilate each other".

Moreover, the von Neumann-Wigner theorem was applied to explain the scarcity of 2D Dirac systems. Then rigorous requirements for a 2D system to achieve Dirac cones were deduced, which is related to the symmetry, parameters, Fermi level, and band overlap.

This paper noted that "Dirac cones are not only the linear energy dispersion around discrete points but also singularities in the spectrum of Hamiltonians and are topologically protected." The authors pointed out "Looking forward, we believe that more and more 2D Dirac materials will be discovered, and a thorough understanding on the existing conditions of Dirac cones is greatly helpful in seeking/designing new systems."

Jinying Wang, Shibin Deng, Zhongfan Liu, and Zhirong Liu. "The Rare Two-Dimensional Materials with Dirac Cones". National Science Review (March 2015) 2 (1): 22-39.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Science China Press
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
The key to the long-term storage of DOC in the deep ocean
Madrid, Spain (SPX) Mar 26, 2015
Researchers from the Malaspina Expedition have made strides in the understanding of the mechanisms governing the persistence of dissolved organic carbon (DOC) for hundreds or thousands of years in the deep ocean. Most of this material is below 1,000 meters deep, but it is not degraded by bacteria. Until now, it was thought that it consisted of non-degradable chemical compounds, but this st ... read more


CARBON WORLDS
Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

CARBON WORLDS
Media Spun Up on NASA Cutting-edge Mars Landing Technology

Flash Reformatted and Marathon Completed

Curiosity Sniffs Out History of Martian Atmosphere

Curiosity Eyes Prominent Mineral Veins on Mars

CARBON WORLDS
NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

Russia, US to Jointly Prepare Mars, Moon Flight Road Map

CARBON WORLDS
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

CARBON WORLDS
Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

Soyuz spacecraft docks at ISS for year-long mission

One-Year Crew Set for Launch to Space Station

CARBON WORLDS
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

CARBON WORLDS
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

CARBON WORLDS
Australia eyes new air search radar

ISRO Says Multi-Object Tracking Radar Ready for Trials

Goddard releases open source core flight software suite to public

A first glimpse inside a macroscopic quantum state




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.