. | . |
Two Years after Rosetta by Staff Writers Bern, Switzerland (SPX) Oct 01, 2018
On September 30, 2016, the active phase of the ESA's Rosetta mission came to an end with the controlled crash landing of the probe on the surface of the comet Chury. Due to the key experiment of the University of Bern, ROSINA, more information regarding the origin of our solar system was acquired. However, over 2 million data records are still awaiting evaluation. For more than two years, the European Space Agency (ESA)'s Rosetta mission investigated the comet 67P/Churyumov-Gerasimenko-"Chury" for short-in great detail, even placing the Philae landing module on its surface during the process. What's more, it was under the leadership of the University of Bern that the ROSINA (the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer was developed, built, tested and operated on the comet via telecommand. ROSINA determined many components of Chury's atmosphere, many of which for the first time on a comet. "The air on the comet would probably be pungent", was the phrase used by Kathrin Altwegg, ROSINA mass spectrometer project leader, to humorously describe the composition of Chury's atmosphere.
Water, molecular oxygen and organic compounds By means of isotopic analysis, a sort of DNA for chemical elements, Altwegg and her team were able to demonstrate that the water on the comet Chury was different from water found on Earth. There are also indications that the ice on the comet is older than our solar system, meaning that this water had already formed in the cold molecular cloud from which our solar system then took shape. One surprise was the evidence found for molecular oxygen on Chury as, on Earth, this is often associated with life. "But there is no life on the comet", says Kathrin Altwegg. What's more, molecular oxygen is very reactive, yet was nevertheless able to withstand billions of years in the comet's ice. "Entire research teams are currently occupied with how this molecular oxygen came into being, and how it is frozen in the comet's ice", explains PD Dr. Martin Rubin, co-investigator in the ROSINA team. Due to the relative abundance of highly-volatile gases, the researchers were also able to determine the temperature at which the comet was formed. "Chury was formed at around minus 250 degrees Celsius (-418 degrees Fahrenheit), i.e. in the bitter cold" says Martin Rubin, main author of the study at the time. What's more, thanks to isotopic analysis, the researchers were able to demonstrate that, if not water, at least a considerable part of the Earth's atmosphere may have originated from comets. Of particular interest was further the existence of many simple organic compounds, even including the amino acid glycine, which ROSINA was able to detect. "The amount of organic compounds on Chury is considerable, which opens up the possibility that comet impacts may have facilitated the emergence of life on Earth." says Kathrin Altwegg.
Over 2 million data records await evaluation This work should continue to keep the researchers busy for years. "Our chief goal is the analysis of the data; after all, that's why we flew to Chury in the first place" says Martin Rubin. The ESA is financed by its member states, including Switzerland. Accordingly, this data also belongs to the general public. "The raw data as it was measured by ROSINA and sent back to Earth is already available to the public" says Martin Rubin. Currently, the team is working on further preparing this data so that it is easier to analyze and so that it can also be used to some extent by researchers who do not have a background in mass spectrometry. The data will be available on the ESA server in a few months' time and will be able to be downloaded without having to register. Against this backdrop, Kathrin Altwegg would particularly like to thank the sponsors, the State Secretariat for Education, Research and Innovation SERI, the Swiss National Science Foundation (SNSF) and the canton of Bern for their support over the years: "Rosetta/ROSINA would never have achieved the success it did without this strong support".
Landslides, avalanches may be key to long-term comet activity Tucson AZ (SPX) Sep 13, 2018 The release of gases through sublimation is the defining process of comets, but a new paper by Planetary Science Institute Research Scientist Jordan K. Steckloff and Senior Scientist Nalin H. Samarasinha says that periodic landslides and avalanches, known as mass wasting, may be responsible for keeping comets active over a long time. These escaping gases loft dust off of the comet, forming a dust cloud visible from the Earth. This gas release can even change the spin state of the comet. However, t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |