. 24/7 Space News .
EARLY EARTH
Trilobites' growth may have resembled that of modern marine crustaceans
by Staff Writers
Vancouver, Canada (SPX) Jul 26, 2022

illustration only

Trilobites- extinct marine arthropods that roamed the world's oceans from about 520 million years ago until they went extinct 250 million years ago, at the end of the Permian period - may have grown in a similar fashion and reached ages that match those of extant crustaceans, a new study has found.

In a paper published in the journal Paleobiology, researchers from the University of British Columbia and Uppsala University show that the Ordovician trilobite Triarthrus eatoni, some 450 million years ago, reached a length of just above 4 cm in about 10 years, with a growth curve very similar to that of small, slow-growing crustaceans.

"T. eatoni lived in low-oxygen environments and, similarly to extant crustaceans exposed to hypoxic conditions, exhibited low growth rates compared with growth under more oxygenated conditions," said Daniel Pauly, principal investigator of UBC's Sea Around Us initiative and lead author of the study. "Low-oxygen environments make is more difficult for water-breathers to grow, and add to the difficulties of breathing through gills, which, as 2D surfaces, cannot keep up with the growth of their 3D bodies. Thus, under hypoxic conditions, they must remain small if they are to maintain the rest of their body functions."

In the case of trilobites, their exopods -external branches on the upper part of their limbs- functioned as gills. Thus, these ancient animals had similar growth constraints to those of their modern counterparts.

To reach these conclusions, Pauly and his colleague from Uppsala University, paleontologist James Holmes, resorted to the analysis of length-frequency data, a method developed within fisheries science and marine biology for studying the growth of fish and invertebrates lacking the physical markings that indicate their age.

The information to perform their analysis was obtained from an earlier publication with information of the length frequency distribution of 295 exceptionally-preserved trilobite fossils collected at 'Beecher's Trilobite Bed' in New York State.

After estimating the parameters of a growth model widely used in fisheries science, the von Bertalanffy growth function, the researchers compared their results with published data on the growth of extant crustaceans. They found that the growth parameters they estimated for Triarthrus eatoni were well within the range of recent, slow-growing crustaceans.

"These findings provide the first reasonable estimates of absolute growth in early animals using methods known to accurately characterize growth in comparable living species," Holmes said. "They show us that nearly half-a-billion years ago, growth in marine arthropods like trilobites was similar to modern examples like crustaceans living in today's oceans."

Research Report:Reassessing growth and mortality estimates for the Ordovician trilobite Triarthrus eatoni


Related Links
Institute For The Oceans And Fisheries
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
How did Earth avoid a Mars-like fate? Ancient rocks hold clues
Rochester NY (SPX) Jul 26, 2022
Approximately 1,800 miles beneath our feet, swirling liquid iron in the Earth's outer core generates our planet's protective magnetic field. This magnetic field is invisible but is vital for life on Earth's surface because it shields the planet from solar wind-streams of radiation from the sun. About 565 million years ago, however, the magnetic field's strength decreased to 10 percent of its strength today. Then, mysteriously, the field bounced back, regaining its strength just before the Cambrian ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Space For Humanity will send first Egyptian to space via Blue Origin

Russian, European astronauts make rare joint spacewalk at ISS

Dragon docks at ISS to deliver various science payloads

US renews space flights with Russia in rare cooperation

EARLY EARTH
CAA launches consultation on UK space launch from Cornwall

Marine Management Organisation opens consultation on Virgin Orbit launch site

Northrop Grumman and NASA test SLS booster

Rocket launches can create night-shining clouds away from the poles

EARLY EARTH
Laser marking on Mars

Mars dust as a basis for life? no problem for certain bacteria

Unequal siblings: Ius and Tithonium Chasma

When Mars throws you a curveball Sol 3539-3540

EARLY EARTH
Chinese astronauts set up new lab on space station

China's newest research lab prepares launch to space

China prepares to launch Wentian lab module

Third Tianlian II-series satellite launched

EARLY EARTH
Terran Orbital Commissions Fleet Space CENTAURI-5 Payload

Eutelsat and OneWeb to Combine: Company Statement

SpaceX launches another 53 Starlink satellites in sixth launch of month

Satellite operators Eutelsat and OneWeb eye possible merger

EARLY EARTH
Innovation with the additive advantage

Understanding friction, the unavoidable enemy

Floors in ancient Greek luxury villa were laid with recycled glass

Emerging technology could help extract lithium from new sources

EARLY EARTH
How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

A New Method to Detect Exoplanets

Rocking shadows in protoplanetary discs

EARLY EARTH
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.