. | . |
Tracking down dark matter by Staff Writers Mainz, Germany (SPX) Jul 05, 2019
Matter surrounds us day and night in all its forms - trees, houses, furniture, and even the air we breathe. But, according to physicists, the visible matter familiar to us may only account for approximately 20 percent of all material in the universe. According to the current theory, as much as 80 percent may be dark matter. This claim is based on several observations, one of which is that stars and galaxies rotate much faster than they would if there were only 'normal' matter present in the universe. Over time, scientists have developed different theories to explain exactly what this mysterious dark matter might be made of. Among the potential candidates that come into question are weakly interacting massive particles or WIMPs. Researchers have spent many years trying to hunt these down with particle detectors, as yet without success. Several years ago, however, scientists proposed an alternative - a class of particles called axions, which are significantly lighter than other particles. According to the theory, the field of these particles oscillates, which means that it varies continuously. The frequency of this oscillation is proportional to the mass of the particles, and, as this is extremely low, the frequency must also be low. But nobody knows just yet if that is the case. The problem is that the field oscillation is as likely to go through a complete cycle once a year as a trillion times a second.
Detecting axions with the help of nuclear spin change "This means we can identify the spin of nuclei within molecules, or, more specifically in our case, within the carbon isotope C13 and hydrogen." The basic assumption is that dark matter can influence the spin of nuclei, hence providing researchers with a way of tracking it down. The spin, however, can also be influenced by the Earth's magnetic field. The researchers use sophisticated shielding to suppress the magnetic field; however, even the best shielding in imperfect. The physicists must therefore decide which proportion of the observed spin changes are due to dark matter and which to the Earth's magnetic field. This led the team of scientists to develop its new comagnetometer configuration. The principle underlying the technique is the fact that molecules generally contain different kinds of atomic nuclei. As the various nuclei will react to the magnetic field and dark matter to differing extents, it is possible to differentiate between these influences.
A part of the possible frequency range has now been investigated "It's rather like looking for a lost ring in a vast garden," said Budker. "We have already searched part of the garden, so we now know this is where the ring - the axion - is not to be found. This has allowed us to considerably narrow down the range in which we hope to find the axion, and we can now focus our search on other ranges."
Relationship found between ordinary, dark matter in galaxy clusters Washington (UPI) Jul 2, 2019 Scientists have discovered a fairly consistent relationship between the mass of ordinary matter and hot gas, and the mass of dark matter in galaxy clusters. Researchers used a combination of complex statistical models and algorithms to analyze data collected by the Local Cluster Substructure Survey and tease out relationships between the three main components that make up galaxy clusters - dark matter, hot gas and stars. The data used for the analysis represented 41 different galaxy clu ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |